×

Hubs-attracting Laplacian and related synchronization on networks. (English) Zbl 1439.05210

Summary: In this work, we introduce a new Laplacian matrix, referred to as the hubs-attracting Laplacian, accounting for diffusion processes on networks where the hopping of a particle occurs with higher probability from low to high degree nodes. This notion complements the one of the hubs-repelling Laplacian discussed in [E. Estrada, Linear Algebra Appl. 596, 256–280 (2020; Zbl 1435.05127)], that considers the opposite scenario, with higher hopping probabilities from high to low degree nodes. We formulate a model of oscillators coupled through the new Laplacian and study the synchronizability of the network through the analysis of the spectrum of the Laplacian. We discuss analytical results providing bounds for the quantities of interest for synchronization and computational results showing that the hubs-attracting Laplacian generally has better synchronizability properties when compared to the classical one, with a low occurrence rate for the graphs where this is not true. Finally, two illustrative case studies of synchronization through the hubs-attracting Laplacian are considered.

MSC:

05C82 Small world graphs, complex networks (graph-theoretic aspects)
05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
05C90 Applications of graph theory
34D06 Synchronization of solutions to ordinary differential equations
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations

Citations:

Zbl 1435.05127
Full Text: DOI

References:

[1] A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, Synchronization in complex networks, Phys. Rep., 469 (2008), pp. 93-153.
[2] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, Complex networks: Structure and dynamics, Phys. Rep., 424 (2006), pp. 175-308. · Zbl 1371.82002
[3] M. Bonaventura, V. Nicosia, and V. Latora, Characteristic times of biased random walks on complex networks, Phys. Rev. E, 89 (2014), 012803.
[4] Z. Burda, J. Duda, J.-M. Luck, and B. Waclaw, Localization of the maximal entropy random walk, Phys. Rev. Lett., 102 (2009), 160602. · Zbl 1371.82043
[5] G. Chen and Z. Duan, Network synchronizability analysis: A graph-theoretic approach, Chaos: An Interdisciplinary Journal of Nonlinear Science, 18 (2008), 037102. · Zbl 1309.05166
[6] Z. Duan, G. Chen, and L. Huang, Complex network synchronizability: Analysis and control, Phys. Rev. E, 76 (2007), 056103.
[7] Z. Duan, C. Liu, and G. Chen, Network synchronizability analysis: The theory of subgraphs and complementary graphs, Phys. D, 237 (2008), pp. 1006-1012. · Zbl 1388.05113
[8] E. Estrada, Hubs-repelling’ Laplacian and related diffusion on graphs/networks, Linear Algebra Appl., 596 (2020), pp. 256-280. · Zbl 1435.05127
[9] A. Gerbaud, K. Altisen, S. Devismes, and P. Lafourcade, Comparison of mean hitting times for a degree-biased random walk, Discrete Appl. Math., 170 (2014), pp. 104-109. · Zbl 1288.05253
[10] J. Gómez-Gardenes, Y. Moreno, and A. Arenas, Paths to synchronization on complex networks, Phys. Rev. Lett., 98 (2007), 034101.
[11] R. Grone and R. Merris, The Laplacian spectrum of a graph II, SIAM J. Discrete Math., 7 (1994), pp. 221-229. · Zbl 0795.05092
[12] R. Grone, R. Merris, and V. S. Sunder, The Laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 218-238, https://doi.org/10.1137/0611016. · Zbl 0733.05060
[13] A. Hagberg and D. A. Schult, Rewiring networks for synchronization, Chaos: An Interdisciplinary Journal of Nonlinear Science, 18 (2008), 037105.
[14] H. Hong, B. J. Kim, M. Choi, and H. Park, Factors that predict better synchronizability on complex networks, Phys. Rev. E, 69 (2004), 067105.
[15] L. Huang, Q. Chen, Y.-C. Lai, and L. M. Pecora, Generic behavior of master-stability functions in coupled nonlinear dynamical systems, Phys. Rev. E, 80 (2009), 036204.
[16] L. Kempton, G. Herrmann, and M. di Bernardo, Self-organization of weighted networks for optimal synchronizability, IEEE Trans. Control Netw. Syst., 5 (2017), pp. 1541-1550. · Zbl 1515.93095
[17] V. Latora, V. Nicosia, and G. Russo, Complex Networks: Principles, Methods, and Applications, Cambridge University Press, Cambridge, 2017. · Zbl 1387.68003
[18] J. Lu, X. Yu, G. Chen, and D. Cheng, Characterizing the synchronizability of small-world dynamical networks, IEEE Trans. Circuits Syst. I. Regul. Pap., 51 (2004), pp. 787-796. · Zbl 1374.34220
[19] N. Masuda, M. A. Porter, and R. Lambiotte, Random walks and diffusion on networks, Phys. Rep., 716 (2017), pp. 1-58. · Zbl 1377.05180
[20] R. Merris, Laplacian matrices of graphs: A survey, Linear Algebra Appl., 197 (1994), pp. 143-176. · Zbl 0802.05053
[21] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent Networks, Vol. 33, Princeton University Press, Princeton, NJ, 2010. · Zbl 1203.93001
[22] B. Mohar, The Laplacian Spectrum of Graphs, in Graph Theory, Combinatorics, and Applications, Vol. 2, Y. Alavi, G. Chartrand, and O. Oellermann, eds., Wiley, New York, 1991. · Zbl 0840.05059
[23] R. J. Mondragón, Core-biased random walks in networks, J. Complex Netw., 6 (2018), pp. 877-886.
[24] A. E. Motter, C. Zhou, and J. Kurths, Network synchronization, diffusion, and the paradox of heterogeneity, Phys. Rev. E, 71 (2005), 016116.
[25] D. Mugnolo, Semigroup Methods for Evolution Equations on Networks, Springer, Cham, 2014. · Zbl 1306.47001
[26] T. Nishikawa and A. E. Motter, Synchronization is optimal in nondiagonalizable networks, Phys. Rev. E, 73 (2006), 065106. · Zbl 1117.34048
[27] T. Nishikawa and A. E. Motter, Network synchronization landscape reveals compensatory structures, quantization, and the positive effect of negative interactions, Proc. Natl. Acad. Sci. USA, 107 (2010), pp. 10342-10347.
[28] T. Nishikawa, A. E. Motter, Y.-C. Lai, and F. C. Hoppensteadt, Heterogeneity in oscillator networks: Are smaller worlds easier to synchronize?, Phys. Rev. Lett., 91 (2003), 014101.
[29] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A. Vespignani, Epidemic processes in complex networks, Rev. Modern Phys., 87 (2015), pp. 925-979.
[30] L. M. Pecora and T. L. Carroll, Master stability functions for synchronized coupled systems, Phys. Rev. Lett., 80 (1998), .2109.
[31] C. Poignard, T. Pereira, and J. P. Pade, Spectra of Laplacian matrices of weighted graphs: Structural genericity properties, SIAM J. Appl. Math., 78 (2018), pp. 372-394, https://doi.org/10.1137/17M1124474. · Zbl 1394.35298
[32] A. A. Rad, M. Jalili, and M. Hasler, Efficient rewirings for enhancing synchronizability of dynamical networks, Chaos: An Interdisciplinary Journal of Nonlinear Science, 18 (2008), 037104. · Zbl 1309.05167
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.