×

Reply to comment on “Control landscapes are almost always trap free: a geometric assessment”. (English) Zbl 1411.81105

Summary: This paper is a rebuttal of the comment by D. V. Zhdanov [ibid. 61, No. 50, Article ID 508001, 8 p. (2018; Zbl 1411.81106)] with regard to our paper [B. Russell et al., ibid. 50, No. 20, Article ID 205302, 19 p. (2017; Zbl 1367.81074)]. Parts of the comment either misrepresent the original claims in [Russell et al., loc. cit. (2017)] or consider issues that go beyond the scope of [Russell et al., loc. cit. (2017)]. We address all of these points in the rebuttal. A remaining item about the prospect of an accumulation of null sets was already considered in a prior work [B. Russell et al., ibid. 51, No. 33, Article ID 335103, 20 p. (2018; Zbl 1401.93111)]. Importantly, the comment fails to consider the vast and continually growing set of successful quantum control tests under well-defined conditions, which serves as foundational evidence for the results in [Russell et al., loc. cit.(2017)]. In summary, the remarks in the comment either misconstrue the claims of [Russell et al., loc. cit.(2017)] or raise points that are irrelevant to the goal of the original work. Thus, we conclude that the primary claim of the original paper stands: almost all closed finite dimensional quantum systems are trap free given adequate control resources.

MSC:

81Q93 Quantum control
81P68 Quantum computation
93C70 Time-scale analysis and singular perturbations in control/observation systems
Full Text: DOI

References:

[1] Zhdanov, D., Comment on ‘Control landscapes are almost always trap free: a geometric assessment’, J. Phys. A: Math. Theor., 51, (2018) · Zbl 1411.81106 · doi:10.1088/1751-8121/aaecf6
[2] Russell, B.; Rabitz, H.; Wu, R-B, Control landscapes are almost always trap free: a geometric assessment, J. Phys. A: Math. Theor., 50, (2017) · Zbl 1367.81074 · doi:10.1088/1751-8121/aa6b77
[3] Russell, B.; Vuglar, S.; Rabitz, H., Control landscapes for a class of non-linear dynamical systems: sufficient conditions for the absence of traps, J. Phys. A: Math. Theor., 51, (2018) · Zbl 1401.93111 · doi:10.1088/1751-8121/aacc85
[4] Vakulenko, S., Complexity and Evolution of Dissipative Systems. An Analytical Approach, (2013), Berlin: De Gruyter, Berlin
[5] Russell, B.; Rabitz, H., Common foundations of optimal control across the sciences: evidence of a free lunch, Phil. Trans. R. Soc., 375, 20160210, (2017) · Zbl 1404.49028 · doi:10.1098/rsta.2016.0210
[6] Altafini, C., Controllability of quantum mechanical systems by root space decomposition of su(N), J. Math. Phys., 43, 2051, (2002) · Zbl 1059.93016 · doi:10.1063/1.1467611
[7] Moore, K. W., Why is chemical synthesis and property optimization easier than expected?, Phys. Chem. Chem. Phys., 13, 10048-10070, (2011) · doi:10.1039/c1cp20353c
[8] Feng, X., Global optimality of fitness landscapes in evolution, Chem. Sci., 3, 900-906, (2012) · doi:10.1039/c1sc00648g
[9] Moore, K. W.; Rabitz, H., Exploring constrained quantum control landscapes, J. Chem. Phys., 137, (2012) · doi:10.1063/1.4757133
[10] Arnold, V.; Levi, M., Geometrical Methods in the Theory of Ordinary Differential Equations, p 351, (1988), New York: Springer, New York · Zbl 0648.34002
[11] Wu, R., Singularities of quantum control landscapes, Phys. Rev. A, 86, (2012) · doi:10.1103/PhysRevA.86.013405
[12] Moore, K. W.; Rabitz, H., Exploring quantum control landscapes: topology, features, and optimization scaling, Phys. Rev. A, 84, (2011) · doi:10.1103/PhysRevA.84.012109
[13] Riviello, G., Searching for an optimal control in the presence of saddles on the quantum-mechanical observable landscape, Phys. Rev. A, 95, (2017) · doi:10.1103/PhysRevA.95.063418
[14] Moore, K., Search complexity and resource scaling for the quantum optimal control of unitary transformations, Phys Rev. A, 83, (2011) · doi:10.1103/PhysRevA.83.012326
[15] Sun, Q.; Pelczer, I.; Riviello, G.; Wu, R. B.; Rabitz, H., Experimental observation of saddle points over the quantum control landscape of a two-spin system, Phys. Rev. A, 91, (2015) · doi:10.1103/PhysRevA.91.043412
[16] Sun, Q.; Pelczer, I.; Riviello, G.; Wu, R. B.; Rabitz, H., Experimental exploration over a quantum control landscape through nuclear magnetic resonance, Phys. Rev. A, 89, (2014) · doi:10.1103/PhysRevA.89.033413
[17] Roslund, J.; Rabitz, H., Experimental quantum control landscapes: inherent monotonicity and artificial structure, Phys. Rev. A, 80, (2009) · doi:10.1103/PhysRevA.80.013408
[18] Roslund, J.; Rabitz, H., Dynamic dimensionality identification for quantum control, Phys. Rev. Lett., 112, (2014) · doi:10.1103/PhysRevA.112.143001
[19] Russell, B.; Rabitz, H.; Wu, R-B, Quantum control landscapes beyond the dipole approximation, (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.