×

Stochastic Navier-Stokes equations on a thin spherical domain. (English) Zbl 1480.60178

This paper treats the stochastic Navier-Stokes equations (SNSE) for incompressible fluids: \[ \begin{aligned} d \tilde{u}_{\varepsilon} - \{ \nu \cdot \varDelta \tilde{u}_{\varepsilon} - ( \tilde{u}_{\varepsilon} \cdot \nabla ) \tilde{u}_{\varepsilon} - \nabla \tilde{p}_{\varepsilon} \}\, dt &= \tilde{f}_{\varepsilon}\, dt + \tilde{G}_{\varepsilon} d \tilde{W}_{ \varepsilon} (t) \quad &\text{in} \quad Q_{\varepsilon} \times (0,T), \\ div\, \tilde{u}_{\varepsilon} &= 0 \qquad \qquad &\text{in} \quad Q_{\varepsilon} \times (0,T), \end{aligned} \tag{1} \] in thin spherical shells \[Q_{\varepsilon} := \{ y \in {\mathbb R}^3 : 1 \leqslant \vert y \vert \leqslant 1 + \varepsilon \}, \quad \text{where} \quad 0 < \varepsilon < \frac{1}{2}, \] along with free boundary conditions \[ \begin{aligned} \tilde{u}_{\varepsilon} \cdot \mathbf{n} = 0, \quad curl\, \tilde{u}_{\varepsilon} \times \mathbf{n} &= 0 \qquad &&\text{on} \quad \partial Q_{\varepsilon} \times (0,T), \\ \tilde{u}_{\varepsilon} (0, \cdot) &= \tilde{u}_0^{\varepsilon} &&\text{in} \quad Q_{\varepsilon}, \end{aligned} \] where \(\tilde{u}_{\varepsilon} = ( \tilde{u}_{\varepsilon}^r, \tilde{u}_{\varepsilon}^{\lambda}, \tilde{u}_{\varepsilon}^{\varphi})\) is the fluid velocity field, \(p\) is the pressure, \(\nu > 0\) is a fixed kinematic viscosity, \(\tilde{u}_0^{\varepsilon}\) is a divergence free vector field on \(Q_{\varepsilon}\), and \(\mathbf{n}\) is the unit outer normal vector to the boundary \(\partial Q_{\varepsilon}\), and \(\tilde{W}_{\varepsilon}(t)\), \(t \geq 0\), is an \({\mathbb R}^N\)-valued Wiener process in some probability space \(( \Omega, {\mathcal F}, {\mathbb F}, {\mathbb P} )\). \(\tilde{G}_{\varepsilon}\) is a family of maps : \({\mathbb R}_+ \to \tau_2( {\mathbb R}^N; H_{\varepsilon} )\) with \[ H_{\varepsilon} := \{ u \in {\mathbb L}^2(Q_{\varepsilon} ) : div \, u =0 \text{ in } Q_{\varepsilon}, \;\; u \cdot \mathbf{n} = 0 \text{ on } \partial Q_{\varepsilon} \}, \] where \(\tau_2\) denotes the Hilbert-Schmidt class. Assume that \(\tilde{f}_{\varepsilon} \in L^p ( [0,T]; V_{\varepsilon}' )\) for \(\varepsilon \in (0, 1]\) such that for some \(C > 0\), \[ \int_0^T \Vert \tilde{f}_{\varepsilon} (s) \Vert_{ V_{\varepsilon}'}^p\, ds \leqslant C e^{p/2}. \] \(V_{\varepsilon} = {\mathbb W}^{1,2}( Q_{\varepsilon} ) \cap H_{\varepsilon}\) and \(V_{\varepsilon}'\) is a dual space of \(V_{\varepsilon}\). The main statement establishes the convergence of the radial averages of the martingale solution of the 3D stochastic equation (1), as the thickness of the shell \(\varepsilon \to 0\), to a martingale solution \(u\) of the following stochastic Navier-Stokes equations on the unit sphere \({\mathbb S}^2 \subset {\mathbb R}^3\): \[ \begin{aligned} d u - \{ \nu \varDelta' u - ( u \cdot \nabla') u - \nabla' p \}\, dt &= f dt + G d W \quad &&\text{in} \quad {\mathbb S}^2 \times (0,T), \\ div' \, u &= 0 \qquad &&\text{in} \quad {\mathbb S}^2 \times (0,T), \\ u(0, \cdot) &= u_0 &&\text{in} \quad {\mathbb S}^2, \end{aligned} \] where \(u = ( u_{\lambda}, u_{\varphi})\) and \(\varDelta'\) (resp. \(\nabla'\) ) is the Laplace-de Rham operator (resp. the surface gradient) on \({\mathbb S}^2\) respectively. A point \(\eta \in Q_{\varepsilon}\) could be represented by the Cartesian coordinates \(\eta = (x,y,z)\) or \(\eta = (r, \lambda, \varphi)\) in spherical coordinates where \[ x= r \sin \lambda \cos \varphi, \quad y= r \sin \lambda \sin \varphi, \quad z = r \cos \lambda \] for \(r \in (1, 1+ \varepsilon)\), \(\lambda \in [0, \pi]\), and \(\varphi \in [0, 2 \pi)\).
Here is the main result:
Theorem. Let \((\Omega, {\mathcal F}, {\mathbb F}, {\mathbb P}, \tilde{W}_{\varepsilon}, \tilde{u}_{\varepsilon} )\) be a martingale solution of (1). Then the averages in the radial direction of this martingale solution converge to a martingale solution \(( \hat{\Omega}, \hat{ {\mathcal F} }, \hat{ {\mathbb F} }, \hat{ {\mathbb P} }, \hat{W}, \hat{u} )\) in \(L^2 ( \hat{ \Omega} \times [0,T] \times {\mathbb S}^2 )\).
For other related works, see, e.g. [Z. Brzeźniak et al., J. Math. Anal. Appl. 426, No. 1, 505–545 (2015; Zbl 1322.60102)] for random dynamical systems generated by stochastic Navier-Stokes equations on a rotating sphere, [Z. Brzeźniak et al., J. Math. Fluid Mech. 20, No. 1, 227–253 (2018; Zbl 1390.35260)] for random attractors for the stochastic Navier-Stokes equations on the 2D unit sphere, [Z. Brzeźniak et al., Ann. Probab. 45, No. 5, 3145–3201 (2017; Zbl 1388.60107)] for invariant measure for the stochastic Navier-Stokes equations in unbounded 2D domains.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35R60 PDEs with randomness, stochastic partial differential equations
35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
37H05 General theory of random and stochastic dynamical systems

References:

[1] Aldous, D., Stopping times and tightness., Ann. Probab., 6, 2, 335-340 (1978) · Zbl 0391.60007
[2] Avrin, JD, Large-eigenvalue global existence and regularity results for the Navier-Stokes equation, J. Differ. Equ., 127, 365-390 (1996) · Zbl 0863.35075
[3] Aubin, T., Some Nonlinear Problems in Riemannian Geometry (1998), New York: Springer, New York · Zbl 0896.53003
[4] Babin, AV; Vishik, MI, Attractors of partial differential equations and estimate of their dimension, Russ. Math. Surv., 38, 151-213 (1983) · Zbl 0541.35038
[5] Brzeźniak, Z., Dhariwal, G.: Stochastic constrained Navier-Stokes equations on \(\mathbb{T}^2 \). Submitted (2019). arXiv:1701.01385 · Zbl 1473.60094
[6] Brzeźniak, Z., Dhariwal, G.: Stochastic tamed Navier-Stokes equations on \(\mathbb{R}^3 \): the existence and the uniqueness of solutions and the existence of an invariant measure. To appear in J. Math. Fluid Mech. (2020). arXiv:1904.13295 · Zbl 1439.60058
[7] Brzeźniak, Z., Dhariwal, G., Le Gia, Q.T.: Stochastic Navier-Stokes equations on a thin spherical domain: Existence of a martingale solution (In preparation)
[8] Brzeźniak, Z.; Goldys, B.; Jegaraj, T., Weak solutions of a stochastic Landau-Lifshitz-Gilbert equation, Appl. Math. Res. eXpress, 2013, 1, 1-33 (2013) · Zbl 1272.60041
[9] Brzeźniak, Z.; Goldys, B.; Le Gia, QT, Random dynamical systems generated by stochastic Navier-Stokes equations on a rotating sphere, J. Math. Anal. Appl., 426, 505-545 (2015) · Zbl 1322.60102
[10] Brzeźniak, Z.; Goldys, B.; Le Gia, QT, Random attractors for the stochastic Navier-Stokes equations on the 2D unit sphere, J. Math. Fluid. Mech., 20, 227-253 (2018) · Zbl 1390.35260
[11] Brzeźniak, Z.; Motyl, E., Existence of a martingale solution of the stochastic Navier-Stokes equations in unbounded 2D and 3D domains, J. Differ. Equ., 254, 4, 1627-1685 (2013) · Zbl 1259.35230
[12] Brzeźniak, Z.; Motyl, E., The existence of martingale solutions to the stochastic Boussinesq equations, Glob. Stoch. Anal., 1, 2, 175-216 (2014) · Zbl 1296.35136
[13] Brzeźniak, Z.; Motyl, E.; Ondreját, M., Invariant measure for the stochastic Navier-Stokes equations in unbounded 2D domains, Ann. Probab., 45, 5, 3145-3201 (2017) · Zbl 1388.60107
[14] Brzeźniak, Z.; Ondreját, M., Stochastic wave equations with values in Riemanninan manifolds. Stochastic partial differential equations and applications, Quaderni di Matematica, 25, 65-97 (2011) · Zbl 1279.60077
[15] Cattabriga, L., Su un problema al contorno relativo al sistema di equazioni di Stokes, Rend. Semin. Mat. Univ. Padova, 31, 308-340 (1961) · Zbl 0116.18002
[16] Ciarlet, PG, Plates and Junctions in Elastic Multi-structures. An Asymptotic Analysis (1990), Paris: Masson, Paris · Zbl 0706.73046
[17] Duvaut, G.; Lions, JL, Inequalities in Mechanics and Physics (1976), Berlin: Springer, Berlin · Zbl 0331.35002
[18] Ghidaglia, J.M., Temam, R.: Lower bound on the dimension of the attractor for the Navier-Stokes equations in space dimension 3. In: Mechanics, Analysis and Geometry: 200 Years After Lagrange, pp. 33-60, North-Hollan Delta Ser., North-Holland, Amsterdam (1991) · Zbl 0734.76016
[19] Grigoryan, A., Heat Kernel and Analysis on Manifolds (2009), Providence, RI: Amer. Math. Soc, Providence, RI · Zbl 1206.58008
[20] Hale, JK; Raugel, G., A damped hyperbolic equation on thin domains, Trans. Am. Math. Soc., 329, 185-219 (1992) · Zbl 0761.35052
[21] Hale, J.K., Raugel, G.: Partial differential equations on thin domains. In: Differential Equations and Mathematical Physics (Birmingham, AL, 1990), pp. 63-97, Math. Sci. Engrg., vol. 186. Academic Press, Boston (1992) · Zbl 0785.35050
[22] Hale, JK; Raugel, G., Reaction-diffusion equation on thin domains, J. Math. Pures Appl., 71, 33-95 (1992) · Zbl 0840.35044
[23] Ibragimov, RN; Pelinovsky, DE, Incompressible viscous fluid flows in a thin spherical shell, J. Math. Fluid Mech., 11, 60-90 (2009) · Zbl 1162.76347
[24] Ibragimov, RN, Nonlinear viscous fluid patterns in a thin rotating spherical domain and applications, Phys. Fluids, 23, 123102 (2011) · Zbl 1308.76297
[25] Ibragimov, NH; Ibragimov, RN, Integration by quadratures of the nonlinear Euler equations modeling atmospheric flows in a thin rotating spherical shell, Phys. Lett. A, 375, 3858 (2011) · Zbl 1254.76125
[26] Iftimie, D., The 3D Navier-Stokes equations seen as a perturbation of the 2D Navier-Stokes equations, Bull. Soc. Math. France, 127, 473-517 (1999) · Zbl 0946.35059
[27] Iftimie, D.; Raugel, G., Some results on the Navier-Stokes equations in thin 3D domains, J. Differ. Equ., 169, 281-331 (2001) · Zbl 0972.35085
[28] Il’in, AA, The Navier-Stokes and Euler equations on two dimensional manifolds, Math. USSR Sb., 69, 559-579 (1991) · Zbl 0724.35088
[29] Il’in, AA, Partially dissipative semigroups generated by the Navier-Stokes system on two dimensional manifolds and their attractors, Russ. Acad. Sci. Sb. Math., 78, 47-76 (1994) · Zbl 0813.35080
[30] Il’in, AA; Filatov, AN, On unique solvability of the Navier-Stokes equations on the two dimensional sphere, Sov. Math. Dokl., 38, 9-13 (1989) · Zbl 0688.35076
[31] Jakubowski, A.: The almost sure Skorokhod representation for subsequences in nonmetric spaces. Teor. Veroyatn. Primen. 42(1), 209-216 (1998); translation in Theory Probab. Appl. 42(1), 167-174 (1998) · Zbl 0923.60001
[32] Kruse, R., Strong and Weak Approximation of Semilinear Stochastic Evolution Equations. Lecture Notes Math. (2014), Cham: Springer, Cham · Zbl 1285.60002
[33] Kuratowski, K.: Topologie, Vol. I (French)3’eme Ed. Monografie Matematyczne, Tom XX, Polskie Towarzystwo Matematyczne, Warszawa (1952) · Zbl 0049.39703
[34] Lions, JL; Temam, R.; Wang, S., New formulations of the primitive equations of atmosphere and applications, Nonlinearity, 5, 237-288 (1992) · Zbl 0746.76019
[35] Lions, JL; Temam, R.; Wang, S., On the equations of the large-scale ocean, Nonlinearity, 5, 1007-1053 (1992) · Zbl 0766.35039
[36] Lions, JL; Temam, R.; Wang, SH, Mathematical theory for the coupled atmosphere-ocean models, J. Math. Pures Appl. (9), 74, 2, 105-163 (1995) · Zbl 0866.76025
[37] Marsden, JE; Raitu, TS; Raugel, G., Les équation d’Euler dans des coques sphériques minces, C. R. Acad. Sci. Paris, 321, 1201-1206 (1995) · Zbl 0837.76077
[38] Métivier, M., Semimartingales: A Course on Stochastic Processes (1982), Berlin: Walter de Gruyter & and Co., Berlin · Zbl 0503.60054
[39] Métivier, M., Stochastic Partial Differential Equations in Infinite Dimensions, 142 (1988), Pisa: Scuola Normale Superiore, Pisa · Zbl 0664.60062
[40] Mikulevicius, R.; Rozovskii, BL, Global \(L^2\)-solutions of stochastic Navier-Stokes equations, Ann. Prob., 33, 1, 137-176 (2005) · Zbl 1098.60062
[41] Moise, I.; Temam, R.; Ziane, M., Asymptotic analysis of the Navier-Stokes equations in thin domains, Topol. Methods Nonlinear Anal., 10, 249-282 (1997) · Zbl 0957.35108
[42] Motyl, E., Stochastic hydrodynamic-type evolution equations driven by Lévy noise in 3D unbounded domains—abstract framework and applications, Stoch. Process. Appl., 124, 2052-2097 (2014) · Zbl 1303.35075
[43] Pedlosky, J., Geophysical Fluid Dynamics, xiv+710 (1987), New York: Springer, New York · Zbl 0713.76005
[44] Raugel, G.; Sell, GR, Navier-Stokes equations on thin 3D domains I. Global attractors and global regularity of solutions, J. Am. Math. Soc., 6, 503-568 (1993) · Zbl 0787.34039
[45] Raugel, G., Sell, G.R.: Navier-Stokes equations on thin 3D domains II. Global regularity of spatially periodic solutions. In: Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar, vol. XI, pp. 205-247, Longman, Harlow (1994) · Zbl 0804.35106
[46] Saito, J., Boussinesq equations in thin spherical domains, Kyushu J. Math., 59, 443-465 (2005) · Zbl 1223.76012
[47] Serrin, J., Mathematical Principles of Classical Fluid Mechanics, Encly. of Physics, 125-263 (1959), New York: Springer, New York
[48] Taylor, ME, Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations, Commun. Partial Differ. Equ., 17, 1407-1456 (1992) · Zbl 0771.35047
[49] Temam, R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, xxi+650 (1997), New York: Springer, New York · Zbl 0871.35001
[50] Temam, R., Navier-Stokes Equations: Theory and Numerical Analysis (2000), UK: American Mathematical Society, UK · Zbl 0383.35057
[51] Temam, R.; Wang, S., Inertial forms of Navier-Stokes equations on the sphere, J. Funct. Anal., 117, 215-242 (1993) · Zbl 0801.35109
[52] Temam, R.; Ziane, M., Navier-Stokes equations in three-dimensional thin domains with various boundary conditions, Adv. Differ. Equ., 1, 499-546 (1996) · Zbl 0864.35083
[53] Temam, R.; Ziane, M., Navier-Stokes equations in thin spherical domains, Contemp. Math., 209, 281-314 (1997) · Zbl 0891.35119
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.