×

Constacyclic codes of length \(kl^{m}p^{n}\) over a finite field. (English) Zbl 1404.94149

Summary: We correct Theorem 1 and Theorem 3 in [H. Tong, Finite Fields Appl. 41, 159–173 (2016; Zbl 1372.94466)] and give the factorization of \(x^{k l^m p^n} - \lambda(\lambda \in \mathbb{F}_q^\ast)\) in the case that \(\gcd(k, q - 1) = 1\) and \(l |(q - 1)\). Then, for different odd primes \(k\), \(l\) and \(p\), the structures of constacyclic codes of length \(k l^m p^n\) over a finite field \(\mathbb{F}_q\) with characteristic \(p\) are obtained in terms of the generator polynomials completely.

MSC:

94B15 Cyclic codes
11T71 Algebraic coding theory; cryptography (number-theoretic aspects)
94B05 Linear codes (general theory)

Citations:

Zbl 1372.94466
Full Text: DOI

References:

[1] Bakshi, G. K.; Raka, M., A class of constacyclic codes over a finite field, Finite Fields Appl., 18, 362-377 (2012) · Zbl 1250.94067
[2] Chen, B.; Dinh, H. Q.; Liu, H., Repeated-root constacyclic codes of length \(l p^s\) and their duals, Discrete Appl. Math., 177, 60-70 (2014) · Zbl 1325.94156
[3] Chen, B.; Dinh, H. Q.; Liu, H., Repeated-root constacyclic codes of length \(2 l^m p^n\), Finite Fields Appl., 33, 137-159 (2015) · Zbl 1368.11133
[4] Chen, B.; Fan, Y.; Lin, L.; Liu, H., Constacyclic codes over finite fields, Finite Fields Appl., 18, 1217-1231 (2012) · Zbl 1272.94089
[5] Chen, B.; Liu, H.; Zhang, G., A class of minimal cyclic codes over finite fields, Des. Codes Cryptogr., 74, 285-300 (2015) · Zbl 1331.94074
[6] Dinh, H. Q., Constacyclic codes of length \(p^s\) over \(F_{p^m} + u F_{p^m}\), J. Algebra, 324, 940-950 (2010) · Zbl 1226.94017
[7] Dinh, H. Q., Repeated-root constacyclic codes of length \(2 p^s\), Finite Fields Appl., 18, 133-143 (2012) · Zbl 1231.94071
[8] Dinh, H. Q., Structure of repeated-root constacyclic codes of length \(3 p^s\) and their duals, Discrete Math., 313, 983-991 (2013) · Zbl 1268.94036
[9] Dinh, H. Q., Structure of repeated-root cyclic and negacyclic codes of length \(6 p^s\) and their duals, AMS Contemp. Math., 609, 69-87 (2014) · Zbl 1321.94132
[10] Huffman, W. C.; Pless, V., Fundamentals of Error-Correcting Codes (2003), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1099.94030
[11] Lidl, R.; Niederreiter, H., Finite fields, (Rota, G.-C., The Encyclopedia of Mathematics, vol. 20 (1983), Addison-Wesley: Addison-Wesley Reading, MA) · Zbl 0554.12010
[12] MacWilliams, F. J.; Sloane, N. J.A., The Theory of Error-Correcting Codes (1998), North-Holland: North-Holland Amsterdam, 10th impression · Zbl 0369.94008
[13] Pless, V.; Huffman, W. C., Handbook of Coding Theory (1998), Elsevier: Elsevier Amsterdam · Zbl 0907.94001
[14] Sharma, A., Self-dual and self-orthogonal negacyclic codes of length \(2^m p^n\) over a finite field, Discrete Math., 338, 576-592 (2015) · Zbl 1329.94096
[15] Sharma, A.; Bakshi, G. K.; Dumir, V. C.; Raka, M., Cyclotomic numbers and primitive idempotents in the ring \(G F(q) [X] / \langle X^{P^n} - 1 \rangle \), Finite Fields Appl., 10, 653-673 (2004) · Zbl 1075.11081
[16] Tong, H., Repeated-root constacyclic codes of length \(k l^a p^b\) over a finite field, Finite Fields Appl., 41, 159-173 (2016) · Zbl 1372.94466
[17] Zhao, W.; Tang, X.; Gu, Z., All \(\alpha + u \beta \)-constacyclic codes of length \(n p^s\) over \(F_{p^m} + u F_{p^m}\), Finite Fields Appl., 50, 1-16 (2018) · Zbl 1436.94118
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.