×

Model averaging prediction for time series models with a diverging number of parameters. (English) Zbl 1471.62469

Summary: An important problem with the model averaging approach is the choice of weights. In this paper, a generalized Mallows model averaging (GMMA) criterion for choosing weights is developed in the context of an infinite order autoregressive (AR(\(\infty\))) process. The GMMA method adapts to the circumstances in which the dimensions of candidate models can be large and increase with the sample size. The GMMA method is shown to be asymptotically optimal in the sense of achieving the lowest out-of-sample mean squared prediction error (MSPE) for both the independent-realization and the same-realization predictions, which, as a byproduct, solves a conjecture put forward by B. E. Hansen [J. Econom. 146, No. 2, 342–350 (2008; Zbl 1429.62421)] that the well-known Mallows model averaging criterion from B. E. Hansen [Econometrica 75, No. 4, 1175–1189 (2007; Zbl 1133.91051)] is asymptotically optimal for predicting the future of a time series. The rate of the GMMA-based weight estimator tending to the optimal weight vector minimizing the independent-realization MSPE is derived as well. Both simulation experiment and real data analysis illustrate the merits of the GMMA method in the prediction of an AR(\(\infty\)) process.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62M20 Inference from stochastic processes and prediction
62F12 Asymptotic properties of parametric estimators
62P20 Applications of statistics to economics
Full Text: DOI

References:

[1] Akaike, H., Statistical predictor identification, Ann. Inst. Statist. Math., 22, 203-217 (1970) · Zbl 0259.62076
[2] Akaike, H., A new look at the statistical model identification, IEEE Trans. Automat. Control, 19, 716-723 (1974) · Zbl 0314.62039
[3] Anderson, T., Estimation for autoregressive moving average models in the time and frequency domains, Ann. Statist., 5, 842-865 (1977) · Zbl 0368.62075
[4] Ando, T.; Li, K.-C., A model-averaging approach for high-dimensional regression, J. Amer. Statist. Assoc., 109, 254-265 (2014) · Zbl 1367.62209
[5] Berk, K., Consistent autoregressive spectral estimates, Ann. Statist., 2, 489-502 (1974) · Zbl 0317.62064
[6] Bhansali, R., Linear prediction by autoregressive model fitting in the time domain, Ann. Statist., 6, 224-231 (1978) · Zbl 0383.62061
[7] Bhansali, R., Asymptotically efficient autoregressive model selection for multistep prediction, Ann. Inst. Statist. Math., 48, 577-602 (1996) · Zbl 0926.62086
[8] Bickel, P.; Gel, Y., Banded regularization of autocovariance matrices in application to parameter estimation and forecasting of time series, J. R. Stat. Soc. Ser. B Stat. Methodol., 73, 711-728 (2011) · Zbl 1228.62106
[9] Bickel, P.; Levina, E., Regularized estimation of large covariance matrices, Ann. Statist., 36, 199-227 (2008) · Zbl 1132.62040
[10] Box, G.; Jenkins, G., Time Series Analysis: Forecasting and Control (1970), Holden-Day: Holden-Day San Francisco · Zbl 0249.62009
[11] Buckland, S. T.; Burnham, K. P.; Augustin, N. H., Model selection: an integral part of inference, Biometrics, 53, 603-618 (1997) · Zbl 0885.62118
[12] Cheng, X.; Hansen, B. E., Forecasting with factor-augmented regression: a frequentist model averaging approach, J. Econometrics, 186, 280-293 (2015) · Zbl 1332.62357
[13] Cheng, T.-C.; Ing, C.-K.; Yu, S.-H., Toward optimal model averaging in regression models with time series errors, J. Econometrics, 189, 321-334 (2015) · Zbl 1337.62250
[14] Fan, J.; Peng, H., Nonconcave penalized likelihood with a diverging number of parameters, Ann. Statist., 32, 928-961 (2004) · Zbl 1092.62031
[15] Gao, Y.; Zhang, X.; Wang, S.; Zou, G., Model averaging based on leave-subject-out cross-validation, J. Econometrics, 192, 139-151 (2016) · Zbl 1419.62084
[16] Hamilton, J. D., Time Series Analysis (1994), Princeton University Press: Princeton University Press Princeton · Zbl 0831.62061
[17] Hannan, E. J., The estimation of mixed moving average autoregressive systems, Biometrika, 56, 579-593 (1969) · Zbl 0186.52802
[18] Hansen, B. E., Least squares model averaging, Econometrica, 75, 1175-1189 (2007) · Zbl 1133.91051
[19] Hansen, B. E., Least squares forecast averaging, J. Econometrics, 146, 342-350 (2008) · Zbl 1429.62421
[20] Hansen, B. E., Model averaging, asymptotic risk, and regressor groups, Quant. Econ., 5, 495-530 (2014) · Zbl 1398.62181
[21] Hansen, B. E.; Racine, J., Jackknife model averaging, J. Econometrics, 167, 38-46 (2012) · Zbl 1441.62721
[22] Hjort, N. L.; Claeskens, G., Frequentist model average estimators, J. Amer. Statist. Assoc., 98, 879-899 (2003) · Zbl 1047.62003
[23] Hurvich, C. M.; Tsai, C. L., Bias of the corrected AIC criterion for underfitted regression and time series models, Biometrika, 78, 499-509 (1991) · Zbl 1193.62159
[24] Ing, C.-K., Accumulated prediction errors, information criteria and optimal forecasting for autoregressive time series, Ann. Statist., 35, 1238-1277 (2007) · Zbl 1118.62097
[25] Ing, C.-K.; Sin, C.-Y.; Yu, S.-H., Model selection for integrated autoregressive processes of infinite order, J. Multivariate Anal., 106, 57-71 (2012) · Zbl 1236.62105
[26] Ing, C.-K.; Wei, C.-Z., On same-realization prediction in an infinite-order autoregressive process, J. Multivariate Anal., 85, 130-155 (2003) · Zbl 1038.62086
[27] Ing, C.-K.; Wei, C.-Z., Order selection for same-realization predictions in autoregressive processes, Ann. Statist., 33, 2423-2474 (2005) · Zbl 1086.62105
[28] Li, K.-C., Asymptotic optimality for \(C_p, C_L\), cross-validation and generalized cross-validation: discrete index set, Ann. Statist., 15, 958-975 (1987) · Zbl 0653.62037
[29] Liang, H.; Zou, G.; Wan, A. T.K.; Zhang, X., Optimal weight choice for frequentist model average estimators, J. Amer. Statist. Assoc., 106, 1053-1066 (2011) · Zbl 1229.62090
[30] Liu, C.-A., Distribution theory of the least squares averaging estimator, J. Econometrics, 186, 142-159 (2015) · Zbl 1331.62337
[31] Liu, Q.; Okui, R., Heteroskedasticity-robust \(C_p\) model averaging, Econom. J., 16, 463-472 (2013) · Zbl 1521.62117
[32] Mallows, C. L., Some comments on \(C_p\), Technometrics, 15, 661-675 (1973) · Zbl 0269.62061
[33] McCracken, M.; Ng, S., FRED-QD: A Quarterly Database for Macroeconomic ResearchWorking Paper (2020)
[34] Ng, S., Variable selection in predictive regressions, Handb. Econ. Forecast., 2, 752-789 (2013)
[35] Parzen, E., Some recent advances in time series modeling, IEEE Trans. Automat. Control, 19, 723-730 (1974) · Zbl 0317.62063
[36] Shibata, R., Convergence of least squares estimates of autoregressive parameters, Aust. J. Stat., 19, 226-235 (1977) · Zbl 0417.62069
[37] Shibata, R., Asymptotically efficient selection of the order of the model for estimating parameters of a linear process, Ann. Statist., 8, 147-164 (1980) · Zbl 0425.62069
[38] Wan, A. T.K.; Zhang, X.; Zou, G., Least squares model averaging by Mallows criterion, J. Econometrics, 156, 277-283 (2010) · Zbl 1431.62291
[39] Wei, C. Z., Adaptive prediction by least squares predictors in stochastic regression models with applications to time series, Ann. Statist., 15, 1667-1682 (1987) · Zbl 0643.62058
[40] Zhang, X.; Wan, A. T.K.; Zou, G., Model averaging by jackknife criterion in models with dependent data, J. Econometrics, 174, 82-94 (2013) · Zbl 1283.62059
[41] Zhang, X.; Yu, D.; Zou, G.; Liang, H., Optimal model averaging estimation for generalized linear models and generalized linear mixed-effects models, J. Amer. Statist. Assoc., 111, 1775-1790 (2016)
[42] Zhu, R.; Zou, G.; Zhang, X., Model averaging for multivariate multiple regression models, Statistics, 52, 205-227 (2018) · Zbl 1390.62104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.