×

Clifford and Weyl superalgebras and spinor representations. (English) Zbl 1498.16029

Let \(\Bbbk\) be an algebraically closed field of characteristic zero. A twisted generalized Weyl (TGW) algebra is an associative \(\Bbbk\)-algebra \(\mathcal{A}_\mu(R, \sigma, t)\) depending on the following parameters:
\(\mu\) – a \(I\times I\) matrix without diagonal with entries in \(\Bbbk\setminus \{0\}\);
\(R\) – an associative \(\Bbbk\)-algebra;
\(\sigma = (\sigma_i)_{i\in I}\) – a sequence of commuting \(\Bbbk\)-algebra automorphisms of \(R\);
\(t = (t_i)_{i\in I}\) – a sequence of central elements of \(R\).

They were introduced in [V. Mazorchuk and L. Turowska, Commun. Algebra 27, No. 6, 2613–2625 (1999; Zbl 0949.17003)] as a generalization of the so called generalized Weyl algebras.
In the paper under review, the authors prove that some supersymmetric analogs of some classical algebras are also examples of TGW Algebras.
In section 3, they prove that the supersymmetric analogs of the Weyl-Clifford superalgebras, \(A_{p|q}^\pm\) can be realized as TGW algebras.
Later, in section 4, they introduce and study the main object of the paper: a family of TGW algebras \(\mathcal{A}(\gamma)^{\pm}\), depending on a matrix \(\gamma\) with integer coefficients. This is a supersymmetric generalization of the construction given in [J. T. Hartwig and V. Serganova, Algebr. Represent. Theory 19, No. 2, 277–313 (2016; Zbl 1352.16027)].
In section 5, the authors apply their results to prove that for appropriate \(\gamma\), the TGW algebras \(\mathcal{A}(\gamma)^{\pm}\), fit into commutative diagrams involving the spinor representation of \(U(\mathfrak{g})\) for \(g = \mathfrak{gl}(m|n)\) and \(\mathfrak{osp}(m|2n)\) which allow them to conclude that some quotients of \(U(\mathfrak{g})\) are examples of TGW algebras for such \(\mathfrak{g}\) and for for classical Lie algebras as well.
It is worth mentioning that the structure of rings (and algebras) with involution and the structure of graded algebras play an important role in the paper.

MSC:

16S30 Universal enveloping algebras of Lie algebras
15A66 Clifford algebras, spinors
17B35 Universal enveloping (super)algebras

References:

[1] В. В. Бавула, Обобщенные алгебры Вейля и их представления, Алгебра и анализ 4 (1992), вып. 1, 75-97. Engl. transl.: V. V. Bavula, Generalized Weyl algebras and their representations, St. Petersburg Math. J. 4 (1993), no. 1, 71-92. · Zbl 0807.16027
[2] Bavula, VV; Jordan, DA, Isomorphism problems and groups of automorphisms for generalized Weyl algebras, Trans. Amer. Math. Soc., 353, 769-794 (2000) · Zbl 0961.16016 · doi:10.1090/S0002-9947-00-02678-7
[3] Bavula, VV; Van Oystaeyen, F., The simple modules of certain generalized crossed products, J. Algebra, 194, 2, 521-566 (1997) · Zbl 0927.16002 · doi:10.1006/jabr.1997.7038
[4] Benkart, G.; Britten, DJ; Lemire, F., Modules with bounded weight multiplicities for simple Lie algebras, Math. Zeit., 225, 333-353 (1997) · Zbl 0884.17004 · doi:10.1007/PL00004314
[5] Block, R., The irreducible representations of the Lie algebra \(\mathfrak{sl} (2)\) and of the Weyl algebra, Adv. Math., 39, 69-110 (1981) · Zbl 0454.17005 · doi:10.1016/0001-8708(81)90058-X
[6] Britten, DJ; Lemire, FW, A classiffication of simple Lie modules having a 1-dimensional weight space, Trans. Amer. Math. Soc., 299, 683-697 (1987) · Zbl 0635.17002
[7] Brzeziński, T., Circle and line bundles over generalized Weyl algebras, Algebr. Represent. Theory, 19, 1, 57-69 (2016) · Zbl 1373.16049 · doi:10.1007/s10468-015-9562-7
[8] Cassidy, T.; Shelton, B., Basic properties of generalized down-up algebras, J. Algebra, 279, 402-421 (2004) · Zbl 1078.16019 · doi:10.1016/j.jalgebra.2004.05.009
[9] Coulembier, K., On a class of tensor product representations for the orthosymplectic superalgebra, J. Pure Appl. Algebra, 217, 5, 819-837 (2013) · Zbl 1277.17005 · doi:10.1016/j.jpaa.2012.09.009
[10] Futorny, V.; Hartwig, JT, On the consistency of twisted generalized Weyl algebras, Proc. Amer. Math. Soc., 140, 10, 3349-3363 (2012) · Zbl 1281.16031 · doi:10.1090/S0002-9939-2012-11184-0
[11] Hartwig, J.; Futorny, V.; Wilson, E., Irreducible completely pointed modules for quantum groups of type A, J. Algebra, 432, 252-279 (2015) · Zbl 1369.17009 · doi:10.1016/j.jalgebra.2015.03.006
[12] Hartwig, JT, Locally finite simple weight modules over twisted generalized Weyl algebras, J. Algebra, 303, 42-76 (2006) · Zbl 1127.16019 · doi:10.1016/j.jalgebra.2006.05.036
[13] Hartwig, JT, Twisted generalized Weyl algebras, polynomial Cartan matrices and Serre-type relations, Comm. Algebra, 38, 4375-4389 (2010) · Zbl 1213.16015 · doi:10.1080/00927870903366926
[14] J. T. Hartwig, Noncommutative singularities and lattice models, arXiv:1612.08125 (2016).
[15] Hartwig, JT; Öinert, J., Simplicity and maximal commutative subalgebras of twisted generalized Weyl algebras, J. Algebra, 373, 312-339 (2013) · Zbl 1276.16019 · doi:10.1016/j.jalgebra.2012.10.009
[16] Hartwig, JT; Serganova, V., Twisted generalized Weyl algebras and primitive quotients of enveloping algebras, Algebr. Represent. Theory, 19, 2, 277-313 (2016) · Zbl 1352.16027 · doi:10.1007/s10468-015-9574-3
[17] Kac, VG, Lie superalgebras, Adv. Math., 26, 8-96 (1977) · Zbl 0366.17012 · doi:10.1016/0001-8708(77)90017-2
[18] Mathieu, O., Classification of irreducible weight modules, Ann. l’institut Fourier, 50, 537-592 (2000) · Zbl 0962.17002 · doi:10.5802/aif.1765
[19] Mazorchuk, V.; Ponomarenko, M.; Turowska, L., Some associative algebras related to \(U( \mathfrak{g} )\) and twisted generalized Weyl algebras, Math. Scand., 92, 5-30 (2003) · Zbl 1031.17009 · doi:10.7146/math.scand.a-14392
[20] Mazorchuk, V.; Turowska, L., Simple weight modules over twisted generalized Weyl algebras, Comm. Algebra, 27, 2613-2625 (1999) · Zbl 0949.17003 · doi:10.1080/00927879908826584
[21] Mazorchuk, V.; Turowska, L., *-Representations of twisted generalized Weyl constructions, Algebr. Represent. Theory, 5, 2, 163-186 (2002) · Zbl 1192.17002 · doi:10.1023/A:1015669525867
[22] Nauwelaerts, E.; Van Oystaeyen, F., Introducing crystalline graded algebras, Algebr. Represent. Theory, 11, 2, 133-148 (2008) · Zbl 1163.16033 · doi:10.1007/s10468-007-9078-x
[23] Nishiyama, K., Oscillator representations for orthosymplectic algebras, J. Algebra, 129, 1, 231-262 (1990) · Zbl 0688.17002 · doi:10.1016/0021-8693(90)90247-L
[24] A. Sergeev, Enveloping algebra U(gl(3)) and orthogonal polynomials, in: Noncommutative Structures in Mathematics and Physics (Kiev, 2000), NATO Sci. Ser. II Math. Phys. Chem., Vol. 22, Kluwer Acad. Publ., Dordrecht, 2001, pp. 113-124. · Zbl 1248.17009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.