×

Liouville theorems for infinity Laplacian with gradient and KPP type equation. (English) Zbl 1529.35210

Summary: In this paper, we prove new Liouville type results for a nonlinear equation involving infinity Laplacian with gradient, of the form \[ \Delta^\gamma_{\infty} u + q(x) \cdot \nabla u | \nabla u |^{2-\gamma} + f(x,u) = 0 \quad \text{in } \mathbb{R}^d, \] where \(\gamma \in [0,2]\) and \(\Delta^\gamma_\infty\) is a \((3 - \gamma)\)-homogeneous operator associated with the infinity Laplacian. Under the assumption that \(\liminf_{|x|\to \infty} \lim_{s \to 0} f(x,s)/ s^{3- \gamma} > 0\) and that \(q\) is a continuous function vanishing at infinity, we construct a positive bounded solution to the equation, and if \(f(x,s) / s^{3-\gamma}\) is decreasing in \(s\), we further obtain its uniqueness by improving a sliding method for infinity Laplacian operators with nonlinear gradient. Otherwise, if \(\limsup_{|x| \to \infty} \sup_{[\delta_1, \delta_2]} f(x,s) < 0\), then under some suitable additional conditions a nonexistence result holds. To this aim, we develop novel techniques to overcome the difficulties stemming from the degeneracy of infinity Laplacian and nonlinearity of the gradient term. Our approach is based on a new regularity result, a strong maximum principle, and a Hopf lemma for infinity Laplacian involving gradient and potential. We also construct some examples to illustrate our results. We further investigate some deeper qualitative properties of the principal eigenvalue of the corresponding nonlinear operator \[ \Delta^\gamma_{\infty} u + q(x) \cdot \nabla u | \nabla u |^{2-\gamma} + c(x)u^{3-\gamma} \] with Dirichlet boundary condition in smooth bounded domains, which may be of independent interest. The results obtained here could be considered as sharp extensions of the Liouville type results obtained in [Zbl 1344.35034; Zbl 1216.35062; Zbl 1258.35094; Zbl 0996.49019; Zbl 1219.35074; Zbl 1112.35070].

MSC:

35J60 Nonlinear elliptic equations
35J15 Second-order elliptic equations
35B53 Liouville theorems and Phragmén-Lindelöf theorems in context of PDEs

References:

[1] D. J. ARAÚJO, R. LEITÃO and E. V. TEIXEIRA, Infinity Laplacian equation with strong absorptions, J. Funct. Anal. 270 (2016), 2249-2267. · Zbl 1344.35034
[2] S. N. ARMSTRONG, C. K. SMART and S. J. SOMERSILLE, An infinity Laplace equation with gradient term and mixed boundary conditions, Proc. Amer. Math. Soc. 139 (2011), 1763-1776. · Zbl 1216.35062
[3] S. N ARMSTRONG and C. K. SMART, An easy proof of Jensen’s theorem on the uniqueness of infinity harmonic functions, Calc. Var. Partial Differential Equations 37(2010), 381-384. · Zbl 1187.35104
[4] G. ARONSSON, Minimization problems for the functional sup x F .x; f .x/; f 0 .x//, Ark. Mat. 6 (1965), 33-53. · Zbl 0156.12502
[5] G. ARONSSON, Minimization problems for the functional sup x F .x; f .x/; f 0 .x//. II, Ark. Mat. 6 (1966), 409-431. · Zbl 0156.12502
[6] G. ARONSSON, Extension of functions satisfying Lipschitz conditions, Ark. Mat. 6 (1967), 551-561. · Zbl 0158.05001
[7] G. ARONSSON, M. G. CRANDALL and P. JUUTINEN, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. (N.S.) 41 (2004), 439-505. · Zbl 1150.35047
[8] H. BERESTYCKI, L. NIRENBERG and S. R. S. VARADHAN, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math. 47 (1994), 47-92. · Zbl 0806.35129
[9] H. BERESTYCKI, F. HAMEL and N. NADIRASHVILI, The speed of propagation for KPP type problems. II-General domains, J. Amer. Math. Soc. 23 (2010), 1-34. · Zbl 1197.35073
[10] H. BERESTYCKI and F. HAMEL, Generalized transition waves and their properties, Comm. Pure Appl. Math. 65 (2012), 592-648. · Zbl 1248.35039
[11] H. BERESTYCKI, F. HAMEL and L. ROSSI, Liouville-type results for semilinear elliptic equations in unbounded domains, Ann. Mat. Pura Appl. (4) 186 (2007), 469-507. · Zbl 1223.35022
[12] T. BHATTACHARYA, E. DIBENEDETTO and J. MANFREDI, Limit as p !1 of Å p u p D f and related extremal problems, Rend. Semin. Mat. Univ. Politec. Torino (1989), 15-68.
[13] T. BHATTACHARYA and L. MARAZZI, An eigenvalue problem for the infinity-Laplacian, Electron J. Differential Equations (2013), 30 pp. · Zbl 1290.35175
[14] T. BHATTACHARYA and A. MOHAMMED, Inhomogeneous Dirichlet problems involving the infinity-Laplacian, Adv. Differential Equations 17 (2012), 225-266. · Zbl 1258.35094
[15] T. BHATTACHARYA, An elementary proof of the Harnack inequality for non-negative infinity-superharmonic functions, Electron. J. Differential Equations (2001), 8 pp. · Zbl 0966.35052
[16] I. BIRINDELLI and F. DEMENGEL, Some Liouville theorems for the p-Laplacian, In: “Pro-ceedings of the 2001-Luminy conference on Quasilinear Elliptic and Parabolic Equations and System”, J. Busca and L. Veron (eds.), Electron. J. Diff. Eqns., Conf. 8, Southwest Texas State Univ., San Marcos, TX, 2002, 35-46. · Zbl 1034.35031
[17] I. BIRINDELLI, G. GALISE and H. ISHII, Existence through convexity for the truncated Laplacians, Math. Ann. 379 (2021), 909-950. · Zbl 1466.35203
[18] G. BUTTAZZO and B. KAWOHL, Overdetermined boundary value problems for the 1-Laplacian, Int. Math. Res. Not. IMRN 2011, 237-247. · Zbl 1219.35145
[19] V. CASELLES, J-M. MOREL and C. SBERT, An axiomatic approach to image interpolation, IEEE Trans. Image Process. 7 (1998), 376-386. · Zbl 0993.94504
[20] F. CHARRO and I. PERAL, Zero order perturbations to fully nonlinear equations: Compar-ison, existence and uniqueness, Commun. Contemp. Math. 11 (2009), 131-164. · Zbl 1179.35119
[21] G. CRASTA and I. FRAGALÀ, A symmetry problem for the infinity Laplacian, Int. Math. Res. Not. IMRN 2015, 8411-8436. · Zbl 1364.35206
[22] G. CRASTA and I. FRAGALÀ, On the Dirichlet and Serrin problems for the inhomogeneous infinity Laplacian in convex domains: regularity and geometric results, Arch. Ration. Mech. Anal. 218 (2015), 1577-1607. · Zbl 1373.35206
[23] M. G. CRANDALL, A Visit with the 1-Laplace equation, In: “Calculus of Variations and Nonlinear Partial Differential Equations”, B. Dacorogna, P. Marcellini (eds.), Lecture Notes in Mathematics, Vol. 1927, Springer, Berlin, Heidelberg, 2008, 75-122. · Zbl 1357.49112
[24] M. G. CRANDALL, L. C. EVANS and R. F. GARIEPY, Optimal Lipschitz extensions and the infinity-Laplacian, Calc. Var. Partial Differential Equations 13 (2001), 123-139. · Zbl 0996.49019
[25] M. G. CRANDALL, H. ISHII and P.-L. LIONS, User’s guide to viscosity solutions of second-order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), 1-67. · Zbl 0755.35015
[26] J. DÁVILA, L. DUPAIGNE and A. FARINA, Partial regularity of finite Morse index solu-tions to the Lane-Emden equation, J. Funct. Anal. 261 (2011), 218-232. · Zbl 1215.35076
[27] J. DÁVILA, L. DUPAIGNE, K. L. WANG and J. C. WEI, A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem, Adv. Math. 258 (2014), 240-285. · Zbl 1317.35054
[28] L. D’ONOFRIO, F. GIANNETTI, T. IWANIEC, J. MANFREDI and T. RADICE, Divergence forms of the 1-Laplacian, Publ. Mat. 50 (2006), 229-248. · Zbl 1387.35213
[29] L. C. EVANS and O. SAVIN, C 1;˛r egularity for infinity harmonic functions in two dimen-sions, Calc. Var. Partial Differential Equations 32 (2008), 325-347. · Zbl 1151.35096
[30] L. C. EVANS and C. K. SMART, Everywhere differentiability of infinity harmonic functions, Calc. Var. Partial Differential Equations 42 (2011), 289-299. · Zbl 1251.49034
[31] R. JENSEN, Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient, Arch. Ration. Mech. Anal. 123 (1993), 51-74. · Zbl 0789.35008
[32] P. JUUTINEN, M. PARVIAINEN and J. D. ROSSI, Discontinuous gradient constraints and the infinity Laplacian, Int. Math. Res. Not. IMRN 2016, 2451-2492. · Zbl 1404.35175
[33] P. JUUTINEN, Principal eigenvalue of a very badly degenerate operator and applications, J. Differential Equations 236 (2007), 532-550. · Zbl 1132.35066
[34] P. JUUTINEN and P. LINDQVIST, On the higher eigenvalues for the 1-eigenvalue problem, Calc. Var. Partial Differential Equations 23 (2005), 169-192. · Zbl 1080.35057
[35] P. JUUTINEN, P. LINDQVIST and J. J. MANFREDI, The 1-eigenvalue problem, Arch. Ration. Mech. Anal. 148 (1999), 89-105. · Zbl 0947.35104
[36] H. KOCH, Y. R-Y ZHANG and Y. ZHOU, An asymptotic sharp Sobolev regularity for planar infinity harmonic functions, J. Math. Pures Appl. (9) 132 (2019), 457-482. · Zbl 1435.35143
[37] H. KOCH, Y. R-Y ZHANG and Y. ZHOU, Some sharp Sobolev regularity for inhomoge-neous infinity Laplace equation in plane, J. Math. Pures Appl. (9) 132 (2019), 483-521. · Zbl 1435.35161
[38] Y. Y. LI, L. NGUYEN and B. WANG, Comparison principles and Lipschitz regularity for some nonlinear degenerate elliptic equations, Calc. Var. Partial Differential Equations 57 (2018), 29 pp. · Zbl 1397.35100
[39] E. LINDGREN, On the regularity of solutions of the inhomogeneous infinity Laplace equa-tion, Proc. Amer. Math. Soc. 142 (2014), 277-288. · Zbl 1287.35025
[40] P. LINDQVIST, “Notes on the Infinity Laplace Equation”, SpringerBriefs in Mathematics, Springer, Cham, 2016. · Zbl 1352.35045
[41] R. LÓPEZ-SORIANO, J. C. NAVARRO-CLIMENT and J. D. ROSSI, The infinity Laplacian with a transport term, J. Math. Anal. Appl. 398 (2013), 752-765. · Zbl 1257.35076
[42] G. LU and P. WANG, Inhomogeneous infinity Laplace equation, Adv. Math. 217 (2008), 1838-1868. · Zbl 1152.35042
[43] G. LU and P. WANG, A PDE perspective of the normalized infinity Laplacian, Comm. Partial Differential Equations 33 (2008), 1788-1817. · Zbl 1157.35388
[44] G. LU and P. WANG, Infinity Laplace equation with non-trivial right-hand side, Electron. J. Differential Equations (2010), 12 pp. · Zbl 1194.35194
[45] M. MEIER, Liouville theorems, partial regularity and Hölder continuity of weak solutions to quasilinear elliptic systems, Trans. Amer. Math. Soc. 284 (1984), 371-387. · Zbl 0556.35047
[46] H. MITAKE and H. V. TRAN, Weakly coupled systems of the infinity Laplace equations, Trans. Amer. Math. Soc. 369 (2017), 1773-1795. · Zbl 1359.35054
[47] P.T. NGUYEN and H-H VO, Existence, uniqueness and qualitative properties of positive solutions of quasilinear elliptic equations, J. Funct. Anal. 269 (2015), 3120-3146. · Zbl 1326.35147
[48] S. PATRIZI, The principal eigenvalue of the 1-Laplacian with the Neumann boundary condition, ESAIM Control Optim. Calc. Var. 17 (2011), 575-601. · Zbl 1219.35074
[49] Y. PERES, O. SCHRAMM, S. SHEFFIELD and D. WILSON, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc. 22 (2009), 167-210. · Zbl 1206.91002
[50] M. PORTILHEIRO and J. L. VÁZQUEZ, A porous medium equation involving the infinity-Laplacian. Viscosity solutions and asymptotic behavior, Comm. Partial Differential Equa-tions 37 (2012), 753-793. · Zbl 1248.35113
[51] M. PORTILHEIRO and J. L. VÁZQUEZ, Degenerate homogeneous parabolic equations as-sociated with the infinity-Laplacian, Calc. Var. Partial Differential Equations 46 (2013), 705-724. · Zbl 1262.35137
[52] O. SAVIN, C 1 regularity for infinity harmonic functions in two dimensions, Arch. Ration. Mech. Anal. 176 (2005), 351-361. · Zbl 1112.35070
[53] Indian Institute of Science Education and Research Dr. Homi Bhabha Road Pashan, Pune 411008, India anup@iiserpune.ac.in Faculty of Mathematics and Applications Saigon University 273 An Duong Vuong st. Ward 3, Dist. 5
[54] Ho Chi Minh City, Viet Nam vhhung@sgu.edu.vn
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.