×

Optimal control of a two-equation model of radiotherapy. (English) Zbl 1407.49072

Summary: This paper deals with the optimal control of a mathematical model for the evolution of a Low-Grade Glioma (LGG). We will consider a model of the Fischer-Kolmogorov kind for two compartments of tumor cells, using ideas from T. Galochkina et al. [Math. Biosci. 267, 1–9 (2015; Zbl 1371.92063)] and V. M. Pérez-García [“Mathematical models for the radiotherapy of gliomas”, Preprint, 2012]. The controls are of the form \((t_1, \dots, t_n; d_1, \dots, d_n)\), where \(t_i\) is the \(i\)-th administration time and \(d_i\) is the \(i\)-th applied radiotherapy dose. In the optimal control problem, we try to find controls that maximize, in an admissible class, the first time at which the tumor mass reaches a critical value \(M_{*}\). We present an existence result and, also, some numerical experiments (in the previous paper [the first author and the third author, Comput. Appl. Math. 37, No. 1, 745–762 (2018; Zbl 1397.49064)], we have considered and solved a very similar control problem where tumoral cells of only one kind appear).

MSC:

49S05 Variational principles of physics
49J20 Existence theories for optimal control problems involving partial differential equations
35K20 Initial-boundary value problems for second-order parabolic equations
92C50 Medical applications (general)
Full Text: DOI

References:

[1] J. Belmonte; G. F. Calvo; V. M. Pérez-García, Effective particle methods for front solutions of the Fischer-Kolmogorov equations, Commun. Nonlinear Sci. Numer. Simul., 19, 3267-3283 (2014) · Zbl 1510.92090
[2] R. H. Byrd; J. C. Gilbert; J. Nocedal, A trust region method based on interior point techniques for nonlinear programming, Mathematical Programming, 89, 149-185 (2000) · Zbl 1033.90152
[3] R. H. Byrd; M. E. Hribar; J. Nocedal, An interior point algorithm for large-scale nonlinear programming, SIAM Journal on Optimization, 9, 877-900 (1999) · Zbl 0957.65057
[4] I. Ekeland and R. Témam, Convex Analysis and Variational Problems Classics in Applied Mathematics, 28. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.
[5] E. Fernández-Cara; G. Camacho-Vázquez, Optimal control of some simplified models of tumour growth, International Journal of Control, 84, 540-550 (2011) · Zbl 1221.49036
[6] E. Fernández-Cara and L. Prouvée, Optimal control of mathematical models for the radiotherapy of gliomas: The scalar case Comp. Appl. Math. (2016), https://doi.org/10.1007/s40314-016-0366-0. · Zbl 1397.49064
[7] A. V. Fursikov, Optimal Control of Distributed Systems. Theory and Applications Translations of Mathematical Monographs, 187. American Mathematical Society, Providence, RI, 2000. · Zbl 1027.93500
[8] T. Galochkina; A. Bratus; V. M. Pérez-García, Optimal radiotherapy protocols for low-grade gliomas: Insights from a mathematical model, Math. Biosci., 267, 1-9 (2015) · Zbl 1371.92063
[9] M. D. Gunzburger, Perspectives in Flow Control and Optimization Society for Industrial and Applied Mathematics, Philadelphia, 2003. · Zbl 1088.93001
[10] J. -L. Lions, Optimal Control of Systems Governed by Partial Differential Equations Springer-Verlag, Grundelhren Der Mathematishen Wissenschaften Series, vol. 170,1971. · Zbl 0203.09001
[11] A. Martínez-González; G. F. Calvo; L. Pérez-Romansanta; V. M. Pérez-García, Hypoxic Cell Waves around Necrotic Cores in Gliobastoma: A Biomathematical Model and its Therapeutic implications, Bull Math Biol., 74, 2875-2896 (2012) · Zbl 1264.92028
[12] J. Nocedal and S. J. Wright, Numerical Optimization, Second Edition, Springer Series in Operations Research, Springer, New York, 2006. · Zbl 1104.65059
[13] J. Pallud; L. Taillander; L. Capelle; D. Fontaine; M. Peyre; F. Ducray; H. Duffau; E. Mandonnet, Quantitative morphological mri follow-up of low-grade glioma: A plead for systematic measurement of growth rates, Neurosurgery, 71, 729-740 (2012)
[14] J. Pallud; J. F. Llitjos; F. Dhermain; P. Varlet; E. Dezamis; B. Devaux; R. Souillard-Scemama; N. Sanai; M. Koziak; P. Page; M. Schlienger; C. Daumas-Duport; J. F. Meder; C. Oppenheim; F. X. Roux, Dynamic imaging response following radiation therapy predicts long-term outcomes for diffuse low-grade gliomas, Neuro-Oncology, 14, 496-505 (2012)
[15] V. M. Pérez-García, Mathematical Models for the Radiotherapy of Gliomas, (preprint), 2012.
[16] V. M. Pérez-García; G. F. Calvo; J. Belmonte-Beitia; D. Diego; L. Pérez-Romansanta, Bright solitary waves in malignant gliomas, Phys. Rev. E, 84, 021921 (2011)
[17] V. M. Pérez-García and A. Martínez-González, Hypoxic ghost waves accelerate the progression of high-grade gliomas, J. Theor. Biol., (to appear. ), 2012.
[18] V. M. Pérez-García; M. Bogdanska; A. Martínez-González; J. Belmonte-Beitia; Ph. Schucht; L. A. Pérez-Romasanta, Delay effects in the response of low grade gliomas to radiotherapy: A mathematical model and its therapeutical implications, Math. Med. Biol., 32, 307-329 (2015) · Zbl 1325.92049
[19] L. A. Pérez-Romansanta, J. Belmonte-Beitia, A. Martínez-González, G. F. Calvo and V. M. Pérez-García, Mathematical model predicts response to radiotherapy of grade Ⅱ gliomas, Reports of Practical Oncology and Radiotherapy, 18 (2013), S63.
[20] L. Prouvée, Optimal Control of Mathematical Models for the Radiotherapy of Gliomas PhD Thesis, 2015. · Zbl 1397.49064
[21] R. A. Waltz; J. L. Morales; J. Nocedal; D. Orban, An interior algorithm for nonlinear optimization that combines line search and trust region steps, Mathematical Programming, 107, 391-408 (2006) · Zbl 1134.90053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.