×

Asymptotic growth of trajectories of multifractional Brownian motion, with statistical applications to drift parameter estimation. (English) Zbl 1395.60042

The paper accomplishes two goals:
1) to get the asymptotic bounds with \(P=1\) for the rate of growth of the trajectories of multifunctional Brownian motion (mBm) and of some other functionals of mBm, including increments and fractional derivatives;
2) to construct consistent estimators of the unknown drift parameter in the linear and in the Ornstein-Uhlenbeck model involving mBm applying these bounds in 1).
The authors also produce asymptotic bounds with \(P=1\) for the rate of growth of the trajectories of the general Gaussian process and some functionals of it in terms of the covariance function of its increments, which generalizes previous results from Y. Kozachenko et al. [Statistics 49, No. 1, 35–62 (2015; Zbl 1396.62190)].

MSC:

60G15 Gaussian processes
60G22 Fractional processes, including fractional Brownian motion
62F10 Point estimation
62F12 Asymptotic properties of parametric estimators

Citations:

Zbl 1396.62190

References:

[1] Ayache A, Cohen S, Véhel JL (2000) The covariance structure of multifractional Brownian motion, with application to long range dependence. In: Proceedings 2000 IEEE international conference on acoustics, speech, and signal processing - ICASSP’00, vol 6, pp 3810-3813 · Zbl 1194.62097
[2] Azmoodeh E, Morlanes JI (2015) Drift parameter estimation for fractional Ornstein-Uhlenbeck process of the second kind. Statistics 49(1):1-18 · Zbl 1369.62210 · doi:10.1080/02331888.2013.863888
[3] Belfadli R, Es-Sebaiy K, Ouknine Y (2011) Parameter estimation for fractional Ornstein-Uhlenbeck processes: non-ergodic case. Front Sci Eng 1(1):1-16
[4] Benassi A, Jaffard S, Roux D (1997) Gaussian processes and pseudodifferential elliptic operators. Rev Math Iberoam 13(1):19-89 · Zbl 0880.60053 · doi:10.4171/RMI/217
[5] Buldygin V, Kozachenko Y (2000) Metric characterization of random variables and random processes. AMS, American Mathematical Society, Providence · Zbl 0998.60503
[6] El Machkouri M, Es-Sebaiy K, Ouknine Y (2016) Least squares estimator for non-ergodic Ornstein-Uhlenbeck processes driven by Gaussian processes. J Korean Stat Soc 45(3):329-341 · Zbl 1342.62024
[7] Fernique X (1964) Continuité des processus Gaussiens. C R Acad Sci Paris 258:6058-6060 · Zbl 0129.30101
[8] Fernique X (1975) Regularité des trajectoires des fonctions aléatoires gaussiennes. In: École d’Été de Probabilités de Saint-Flour, IV-1974 (Lecture notes in mathematics), vol 480. Springer, Berlin, pp 1-96 · Zbl 0331.60025
[9] Hu Y, Nualart D (2010) Parameter estimation for fractional Ornstein-Uhlenbeck processes. Stat Probab Lett 80(11-12):1030-1038 · Zbl 1187.62137 · doi:10.1016/j.spl.2010.02.018
[10] Kleptsyna M, Le Breton A (2002) Statistical analysis of the fractional Ornstein-Uhlenbeck type process. Stat Inference Stoch Process 5(3):229-248 · Zbl 1021.62061 · doi:10.1023/A:1021220818545
[11] Kozachenko Y, Melnikov A, Mishura Y (2015) On drift parameter estimation in models with fractional Brownian motion. Statistics 49(1):35-62 · Zbl 1396.62190 · doi:10.1080/02331888.2014.907294
[12] Kubilius K, Mishura Y, Ralchenko K, Seleznjev O (2015) Consistency of the drift parameter estimator for the discretized fractional Ornstein-Uhlenbeck process with Hurst index \[H\in (0,\frac{1}{2})H\]∈(0,12). Electron J Stat 9(2):1799-1825 · Zbl 1326.60048 · doi:10.1214/15-EJS1062
[13] Lifshits M (2012) Lectures on Gaussian processes. Springer briefs in mathematics. Springer, Heidelberg · Zbl 1248.60002 · doi:10.1007/978-3-642-24939-6
[14] Mishura Y, Ralchenko K (2014) On drift parameter estimation in models with fractional Brownian motion by discrete observations. Austrian J Stat 43(3):218-228 · doi:10.17713/ajs.v43i3.33
[15] Mishura Y, Ralchenko K, Seleznev O, Shevchenko G (2014) Asymptotic properties of drift parameter estimator based on discrete observations of stochastic differential equation driven by fractional Brownian motion. In: Modern stochastics and applications. Springer optimization and its applications, vol 90. Springer, Cham, pp 303-318 · Zbl 1329.60193
[16] Piterbarg VI (1996) Asymptotic methods in the theory of Gaussian processes and fields, Translations of Mathematical Monographs, vol 148. American Mathematical Society, Providence · Zbl 0841.60024
[17] Ralchenko KV (2011) Approximation of multifractional Brownian motion by absolutely continuous processes. Theory Probab Math Stat 82:115-127 · Zbl 1237.60029 · doi:10.1090/S0094-9000-2011-00831-9
[18] Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives. Gordon and Breach Science, Yverdon · Zbl 0818.26003
[19] Stoev SA, Taqqu MS (2006) How rich is the class of multifractional Brownian motions? Stoch Process Appl 116(2):200-221 · Zbl 1094.60024 · doi:10.1016/j.spa.2005.09.007
[20] Talagrand M (2014) Upper and lower bounds for stochastic processes: modern methods and classical problems, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., A series of modern surveys in mathematicsSpringer, Heidelberg · Zbl 1293.60001 · doi:10.1007/978-3-642-54075-2
[21] Tudor CA, Viens FG (2007) Statistical aspects of the fractional stochastic calculus. Ann Stat 35(3):1183-1212 · Zbl 1194.62097 · doi:10.1214/009053606000001541
[22] Zähle M (1998) Integration with respect to fractal functions and stochastic calculus. I. Probab Theory Relat Fields 111(3):333-374 · Zbl 0918.60037 · doi:10.1007/s004400050171
[23] Zähle M (1999) On the link between fractional and stochastic calculus. In: Stochastic dynamics (Bremen, 1997). Springer, New York, pp 305-325 · Zbl 0947.60060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.