×

A forward-backward probabilistic algorithm for the incompressible Navier-Stokes equations. (English) Zbl 07506618

Summary: A novel probabilistic scheme for solving the incompressible Navier-Stokes equations is studied, in which we approximate a generalized nonlinear Feyman-Kac formula. The velocity field is interpreted as the mean value of a stochastic process ruled by Forward-Backward Stochastic Differential Equations (FBSDEs) driven by Brownian motion. Following an approach by F. Delbaen et al. [Stochastic Processes Appl. 125, No. 7, 2516–2561 (2015; Zbl 1323.35010)] introduced in 2015, the pressure term is obtained from the velocity by solving a Poisson problem as computing the expectation of an integral functional associated to an extra BSDE. The FBSDEs components are numerically solved by using a forward-backward algorithm based on Euler type schemes for the local time integration and the quantization of the increments of Brownian motion following the algorithm proposed by [F. Delarue and S. Menozzi, Ann. Appl. Probab. 16, No. 1, 140–184 (2006; Zbl 1097.65011)]. Numerical results are reported on spatially periodic analytic solutions of the Navier-Stokes equations for incompressible fluids. We illustrate the proposed algorithm on a two dimensional Taylor-Green vortex and three dimensional Beltrami flows.

MSC:

76-XX Fluid mechanics
65-XX Numerical analysis

References:

[1] Navier, C., Mémoire sur les lois du mouvement des fluides, Mem. Acad. Sci. Inst. France, 6, 389-440 (1822)
[2] Stokes, G. G., On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids, Trans. Camb. Phil. Soc., 8, 287-319 (1849)
[3] Euler, L., Principes généraux du mouvement des fluides, Mém. Acad. Roy. Sci. Berlin, 11, 274-315 (1757)
[4] Fefferman, C. L., Existence and smoothness of the Navier-Stokes equation (2000)
[5] Foias, C.; Manley, O.; Rosa, R.; Temam, R., Navier-Stokes Equations and Turbulence, Encyclopedia of Mathematics and its Applications, vol. 83 (2001), Cambridge University Press · Zbl 0994.35002
[6] Chemin, J.-Y.; Desjardins, B.; Gallagher, I.; Grenier, E., Mathematical Geophysics - An Introduction to Rotating Fluids and the Navier-Stokes Equations (2006), Clarendon Press: Clarendon Press Oxford · Zbl 1205.86001
[7] Tartar, L., An Introduction to Navier-Stokes Equation and Oceanography (2006), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 1194.86001
[8] Itô, K., Stochastic integral, Proc. Imp. Acad. (Tokyo), 20, 519-524 (1944) · Zbl 0060.29105
[9] Itô, K., On a stochastic integral equation, Proc. Jpn. Acad., 22, 32-35 (1946) · Zbl 0063.02992
[10] Feynman, R. P., Space-time approach to non-relativistic quantum mechanics, Rev. Mod. Phys., 20, 367-387 (1948) · Zbl 1371.81126
[11] Kac, M., On distributions of certain Wiener functionals, Trans. Am. Math. Soc., 65, 1, 1-13 (1949) · Zbl 0032.03501
[12] Pardoux, É.; Peng, S. G., Adapted solution of a backward stochastic differential equation, Syst. Control Lett., 14, 55-61 (1990) · Zbl 0692.93064
[13] Burgers, J. M., A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech., 1, 171-199 (1948)
[14] Delbaen, F.; Qiu, J.; Tang, S., Forward-backward stochastic differential systems associated to Navier-Stokes equations in the whole space, Stoch. Process. Appl., 125, 2516-2561 (2015) · Zbl 1323.35010
[15] Delarue, F.; Menozzi, S., A forward-backward stochastic algorithm for quasi-linear PDEs, Ann. Appl. Probab., 16, 140-184 (2006) · Zbl 1097.65011
[16] Delarue, F.; Menozzi, S., An interpolated stochastic algorithm for quasi-linear PDEs, Math. Comput., 77, 125-158 (2008) · Zbl 1131.65002
[17] Chorin, A. J., Numerical study of slightly viscous flow, J. Fluid Mech., 57, 785-796 (1973)
[18] Chorin, A. J., Vorticity and Turbulence (1998), Springer-Verlag: Springer-Verlag New York
[19] Méléard, S., Stochastic particle approximations for two-dimensional Navier-Stokes equations, (Maass, A.; Martínez, S.; San Martín, J., Dynamics and Randomness II. Dynamics and Randomness II, Nonlinear Phenomena and Complex Systems, vol. 10 (2004), Kluwer Acad. Publ.: Kluwer Acad. Publ. Dordrecht), 147-197 · Zbl 1107.76028
[20] Le Jan, Y.; Sznitman, A. S., Stochastic cascades and 3-dimensional Navier-Stokes equations, Probab. Theory Relat. Fields, 109, 343-366 (1997) · Zbl 0888.60072
[21] Benachour, S.; Roynette, B.; Vallois, P., Branching process associated with 2d-Navier Stokes equation, Rev. Mat. Iberoam., 17, 331-373 (2001) · Zbl 1013.35063
[22] Bhattacharya, R. N.; Chen, L.; Dobson, S.; Guenther, R. B.; Orum, C.; Ossiander, M.; Thomann, E.; Waymire, E. C., Majorizing kernels and stochastic cascades with applications to incompressible Navier-Stokes equations, Trans. Am. Math. Soc., 355, 5003-5040 (2003) · Zbl 1031.35115
[23] Ossiander, M., A probabilistic representation of solutions of the incompressible Navier-Stokes equations in \(\mathbb{R}^3\), Probab. Theory Relat. Fields, 133, 267-298 (2005) · Zbl 1077.35107
[24] Waymire, E. C., Probability & incompressible Navier-Stokes equations: an overview of some recent developments, Probab. Surv., 2, 1-32 (2005) · Zbl 1189.76424
[25] Constantin, P.; Iyer, G., A stochastic Lagrangian representation of the three-dimensional incompressible Navier-Stokes equations, Commun. Pure Appl. Math., 61, 330-345 (2008) · Zbl 1156.60048
[26] Iyer, G.; Mattingly, J., A stochastic-Lagrangian particle system for the Navier-Stokes equations, Nonlinearity, 21, 2537-2553 (2008) · Zbl 1158.60383
[27] Zhang, X., A stochastic representation for backward incompressible Navier-Stokes equations, Probab. Theory Relat. Fields, 148, 305-332 (2010) · Zbl 1201.60070
[28] Talay, D.; Vaillant, O., A stochastic particle method with random weights for the computation of statistical solutions of McKean-Vlasov equations, Ann. Appl. Probab., 13, 1, 140-180 (2003) · Zbl 1026.60110
[29] Fontbona, J.; Méléard, S., A random space-time birth particle method for 2d vortex equations with external fields, Math. Comput., 77, 263, 1525-1558 (2008) · Zbl 1285.76033
[30] Fontbona, J., Stochastic vortex method for forced three-dimensional Navier-Stokes equations and pathwise convergence rate, Ann. Appl. Probab., 20, 1761-1800 (2010) · Zbl 1222.60077
[31] Cruzeiro, A. B.; Shamarova, E., Navier-Stokes equations and forward-backward SDEs on the group of diffeomorphisms of a torus, Stoch. Process. Appl., 119, 4034-4060 (2009) · Zbl 1188.60036
[32] Bouchard, B.; Menozzi, S., Strong approximations of BSDEs in a domain, Bernoulli, 15, 1117-1147 (2009) · Zbl 1204.60048
[33] Constantin, P.; Iyer, G., A stochastic-Lagrangian approach to the Navier-Stokes equations in domains with boundary, Ann. Appl. Probab., 21, 1466-1492 (2011) · Zbl 1246.76018
[34] Milstein, G. N.; Tretyakov, M. V., Solving the Dirichlet problem for Navier-Stokes equations by probabilistic approach, BIT Numer. Math., 52, 141-153 (2012) · Zbl 1387.35460
[35] Milstein, G. N.; Tretyakov, M. V., Probabilistic methods for the incompressible Navier-Stokes equations with space periodic conditions, Adv. Appl. Probab., 45, 742-772 (2013) · Zbl 1280.35097
[36] Antonelli, F., Backward-forward stochastic differential equations, Ann. Appl. Probab., 3, 777-793 (1993) · Zbl 0780.60058
[37] Ma, J.; Yong, J., Forward-Backward Stochastic Differential Equations and Their Applications, Lecture Notes in Mathematics, vol. 1702 (1999), Springer-Verlag: Springer-Verlag Berlin-Heidelberg · Zbl 0927.60004
[38] Cheridito, P.; Soner, H. M.; Touzi, N.; Victoir, N., Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs, Commun. Pure Appl. Math., 60, 1081-1110 (2007) · Zbl 1121.60062
[39] Pardoux, É.; Peng, S., Backward stochastic differential equations and quasilinear parabolic partial differential equations, (Rozovskii, B. L.; Sowers, R. B., Stochastic Partial Differential Equations and Their Applications. Stochastic Partial Differential Equations and Their Applications, Lect. Notes Control Inf. Sci., vol. 176 (1992), Springer-Verlag: Springer-Verlag Berlin-Heidelberg-New York), 200-217 · Zbl 0766.60079
[40] Delarue, F., On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case, Stoch. Process. Appl., 99, 209-286 (2002) · Zbl 1058.60042
[41] Crandall, M. G.; Ishii, H.; Lions, P.-L., User’s guide to viscosity solutions of second order partial differential equations, Bull. Am. Math. Soc., 27, 1-67 (1992) · Zbl 0755.35015
[42] Mao, X., Backward stochastic differential equations and quasilinear partial differential equations, (Etheridge, A., Stochastic Partial Differential Equations. Stochastic Partial Differential Equations, London Mathematical Society Lecture Note Series, vol. 216 (1995), Cambridge University Press: Cambridge University Press Cambridge), 189-208 · Zbl 0830.60054
[43] Pardoux, É., Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic PDEs of second order, (Decreusefond, L.; Gjerde, J.; Øksendal, B.; Üstünel, A. S., Stochastic Analysis and Related Topics VI. Stochastic Analysis and Related Topics VI, Progress in Probability, vol. 42 (1998), Birkhäuser: Birkhäuser Boston), 79-127 · Zbl 0893.60036
[44] Pardoux, É.; Tang, S., Forward-backward stochastic differential equations and quasilinear parabolic PDEs, Probab. Theory Relat. Fields, 114, 123-150 (1999) · Zbl 0943.60057
[45] Ma, J.; Protter, P.; Yong, J. M., Solving forward-backward stochastic differential equations explicitly - a four step scheme, Probab. Theory Relat. Fields, 98, 3, 339-359 (1994) · Zbl 0794.60056
[46] Chorin, A. J., A numerical method for solving incompressible viscous flow problems, J. Comput. Phys., 2, 12-26 (1967) · Zbl 0149.44802
[47] Majda, A. J.; Bertozzi, A. L., Vorticity and Incompressible Flow (2002), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0983.76001
[48] Milstein, G. N.; Tretyakov, M. V., Discretization of forward-backward stochastic differential equations and related quasi-linear parabolic equations, IMA J. Numer. Anal., 27, 1, 24-44 (2007) · Zbl 1109.65009
[49] Mikulevicius, R.; Platen, E., Rate of convergence of the Euler approximation for diffusion processes, Math. Nachr., 151, 233-239 (1991) · Zbl 0733.65104
[50] Mardones González, H. A., Numerical solution of stochastic differential equations with multiplicative noise (2017), Universidad de Concepción, Ph.D. thesis
[51] Lejay, A.; Reutenauer, V., A variance reduction technique using a quantized Brownian motion as a control variate, J. Comput. Finance, 16, 61-84 (2012)
[52] Kolkiewicz, A. W., Efficient Monte Carlo simulation for integral functionals of Brownian motion, J. Complex., 30, 255-278 (2014) · Zbl 1287.65004
[53] Graf, S.; Luschgy, H., Foundations of Quantization for Probability Distributions, Lecture Notes in Mathematics, vol. 1730 (2000), Springer-Verlag: Springer-Verlag Berlin · Zbl 0951.60003
[54] Pagès, G.; Printems, J., Optimal quadratic quantization for numerics: the Gaussian case, Monte Carlo Methods Appl., 9, 135-165 (2003) · Zbl 1029.65012
[55] Corlay, S.; Pagès, G.; Printems, J., The optimal quantization website (2005)
[56] Corlay, S.; Pagès, G., Functional quantization-based stratified sampling methods, Monte Carlo Methods Appl., 21, 1-32 (2015) · Zbl 1310.65005
[57] Fishman, G. S., A First Course in Monte Carlo (2005), Duxbury Press
[58] Pagès, G.; Printems, J., Functional quantization for numerics with an application to option pricing, Monte Carlo Methods Appl., 11, 407-446 (2005) · Zbl 1161.91402
[59] Taylor, G. I.; Green, A. E., Mechanism of the production of small eddies from large ones, Proc. R. Soc. Lond. A, 158, 499-521 (1937) · JFM 63.1358.03
[60] Brachet, M. E.; Frisch, U.; Meiron, D. I.; Morf, R. H.; Nickel, B. G.; Orszag, S. A., Small-scale structure of the Taylor-Green vortex, J. Fluid Mech., 130, 411-452 (1983) · Zbl 0517.76033
[61] Chorin, A. J., Numerical solution of the Navier-Stokes equations, Math. Comput., 22, 745-762 (1968) · Zbl 0198.50103
[62] Chorin, A. J., On the convergence of discrete approximations to the Navier-Stokes equations, Math. Comput., 23, 341-353 (1969) · Zbl 0184.20103
[63] Beltrami, E., Considerations on hydrodynamics, Int. J. Fusion Energy, 3, 53-57 (1985), translated by Dr. Giuseppe Filipponi from original paper appeared in 1889 in Rendiconti del Reale Instítuto Lombardo, Series II, vol. 22
[64] Shapiro, A., The use of an exact solution of the Navier-Stokes equations in a validation test of a three-dimensional nonhydrostatic numerical model, Mon. Weather Rev., 121, 2420-2425 (1993)
[65] Arnold, V. I., Sur la topologie des écoulements stationnaires des fluides parfaits, C. R. Acad. Sci. Paris, 261, 17-20 (1965) · Zbl 0145.22203
[66] Childress, S., New solutions of the kinematic dynamo problem, J. Math. Phys., 11, 3063-3076 (1970)
[67] Tavelli, M.; Dumbser, M., A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes, J. Comput. Phys., 319, 294-323 (2016) · Zbl 1349.76271
[68] Pavliotis, G. A.; Stuart, A. M.; Zygalakis, K. C., Calculating effective diffusivities in the limit of vanishing molecular diffusion, J. Comput. Phys., 228, 1030-1055 (2009) · Zbl 1161.65007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.