×

Weak \(\mathcal{Z}\)-structures and one-relator groups. (English) Zbl 1542.57014

Motivated by the notion of boundary for hyperbolic and \(CAT(0)\) groups, M. Bestvina and M. Feighn [J. Differ. Geom. 43, No. 4, 783–788 (1996; Zbl 0862.57027)] introduced the notion of a (weak) \(\mathcal{Z}\)-structure and (weak) \(\mathcal{Z}\)-boundary for a group \(G\) of type \(\mathcal{F}\) (i.e., having a finite \(K(G,1)\) complex), with some implications on the Novikov conjecture for \(G\).
A \(\mathcal{Z}\)-structure on a group \(G\) is a pair \((W, Z)\) of spaces satisfying the following conditions:
(1) \(W\) is a contractible \(ANR\),
(2) \(Z\) is a \(\mathcal{Z}\)-set in \(W\),
(3) \(X = W - Z\) admits a proper, free and cocompact action by \(G\), and
(4) For any open cover of \(W\), and any compact subset \(K \subseteq X\), all but finitely many translates of \(K\) lie in some element of the cover (nullity condition).
If only Conditions (1)-(3) are satisfied, then \((W, Z)\) is called a weak \(\mathcal{Z}\)-structure on \(G\), and \(Z\) is a (weak) \(\mathcal{Z}\)-boundary for \(G\).
It is known that a group satisfying (1)–(4) must be of type \(\mathcal{F}\). The question whether or not every group of type \(\mathcal{F}\) admits a weak \(\mathcal{Z}\)-structure remains open (for some classes of groups it is shown for example in [C. R. Guilbault, Algebr. Geom. Topol. 14, No. 2, 1123–1152 (2014; Zbl 1316.57002)]).
In this paper the authors prove that every torsion free one-relator group admits a weak \(\mathcal{Z}\)-structure; and, in the 1-ended case the corresponding weak \(\mathcal{Z}\)-boundary has the shape of either a circle or a Hawaiian earring depending on whether the group is a virtually surface group or not (Theorem 1.2). They also extend this result to some wider class of groups called \(\mathcal{C}\) satisfying a Freiheitssatz property.
Theorem 1.6. Every torsion free, 1-ended generalized one-relator group \(G \in \mathcal{C}\) admits a weak \(\mathcal{Z}\)-structure. Moreover, the corresponding weak \(\mathcal{Z}\)-boundary has the shape of either a circle or a Hawaiian earring depending on whether \(G\) is a virtually surface group or not.

MSC:

57M07 Topological methods in group theory
57M10 Covering spaces and low-dimensional topology

References:

[1] Baues, H. J.; Quintero, A., Infinite Homotopy Theory, K-Monographs in Mathematics, vol. 6 (2001), Kluwer · Zbl 0983.55001
[2] Bestvina, M., Local homology properties of boundaries of groups, Mich. Math. J., 43, 4, 783-788 (1996) · Zbl 0862.57027
[3] Bestvina, M.; Mess, G., The boundary of negatively curved groups, J. Am. Math. Soc., 4, 3, 469-481 (1991) · Zbl 0767.20014
[4] Cárdenas, M.; Lasheras, F. F.; Quintero, A.; Repovš, D., One-relator groups and proper 3-realizability, Rev. Mat. Iberoam., 25, 2, 739-756 (2009) · Zbl 1182.57002
[5] Cárdenas, M.; Lasheras, F. F.; Quintero, A.; Roy, R., A topological equivalence relation for finitely presented groups, J. Pure Appl. Algebra, 224, 7 (2020), 25 pp. · Zbl 1440.57023
[6] Cárdenas, M.; Muro, F.; Quintero, A., The proper L-S category of Whitehead manifolds, Topol. Appl., 153, 557-579 (2005) · Zbl 1088.55003
[7] Chapman, T. A.; Siebenmann, L. C., Finding a boundary for a Hilbert cube manifold, Acta Math., 137, 3-4, 171-208 (1976) · Zbl 0361.57008
[8] Dyer, E.; Vasquez, A. T., Some small aspherical spaces, J. Aust. Math. Soc., 16, 332-352 (1973) · Zbl 0298.57005
[9] Edwards, R. D., Characterizing infinite-dimensional manifolds topologically (after Henryk Torunczyk), (Séminaire Bourbaki (1978/79). Séminaire Bourbaki (1978/79), Lecture Notes in Math., vol. 770 (1980), Springer), 278-302, Exp. No. 540 · Zbl 0429.57004
[10] Edwards, D. A.; Hastings, H. M., Čech and Steenrod Homotopy Theories with Applications to Geometric Topology, Lecture Notes in Mathematics, vol. 542 (1976), Springer-Verlag · Zbl 0334.55001
[11] Farrell, F. T.; Lafont, J-F., EZ-structures and topological applications, Comment. Math. Helv., 80, 103-121 (2005) · Zbl 1094.57003
[12] Ferry, S. C., Stable compactifications of polyhedra, Mich. Math. J., 47, 2, 287-294 (2000) · Zbl 0988.57013
[13] Geoghegan, R., Topological Methods in Group Theory, Graduate Texts in Mathematics, vol. 243 (2008), Springer · Zbl 1141.57001
[14] Guilbault, C. R., A non-\( \mathcal{Z} \)-compactifiable polyhedron whose product with the Hilbert cube is \(\mathcal{Z}\) Z-compactifiable, Fundam. Math., 168, 2, 165-197 (2001) · Zbl 0988.57012
[15] Guilbault, C. R., Weak \(\mathcal{Z} \)-structures for some classes of groups, Algebraic Geom. Topol., 14, 2, 1123-1152 (2014) · Zbl 1316.57002
[16] Guilbault, C. R., Ends, shapes, and boundaries in manifold topology and geometric group theory, (Topology and Geometric Group Theory. Topology and Geometric Group Theory, Springer Proc. Math. Stat., vol. 184 (2016), Springer), 45-125 · Zbl 1434.57019
[17] Guilbault, C. R.; Moran, M. A., Proper homotopy types and \(\mathcal{Z} \)-boundaries of spaces admitting geometric group actions, Expo. Math., 37, 3, 292-313 (2019) · Zbl 1486.20057
[18] Guilbault, C. R.; Moran, M. A.; Tirel, C. J., Boundaries of Baumslag-Solitar groups, Algebraic Geom. Topol., 19, 2077-2097 (2019) · Zbl 1481.20158
[19] Higman, G., A finitely generated infinite simple group, J. Lond. Math. Soc., 16, 332-352 (1973)
[20] Lasheras, F. F., Ascending HNN-extensions and properly 3-realisable groups, Bull. Aust. Math. Soc., 72, 187-196 (2005) · Zbl 1086.57002
[21] Lasheras, F. F.; Roy, R., Relating the Freiheitssatz to the asymptotic behavior of a group, Rev. Mat. Iberoam., 29, 1, 75-89 (2013) · Zbl 1319.57001
[22] Lyndon, R. C.; Schupp, P. E., Combinatorial Group Theory (1977), Springer-Verlag: Springer-Verlag Berlin · Zbl 0368.20023
[23] Magnus, W., Über diskontinuierliche Gruppen mit einer definierenden Relation (Der FHS), J. Reine Angew. Math., 163, 141-165 (1930) · JFM 56.0134.03
[24] Mardešic, S.; Segal, J., Shape Theory (1982), North-Holland · Zbl 0495.55001
[25] Mihalik, M.; Tschantz, S., One relator groups are semistable at infinity, Topology, 31, 4, 801-804 (1992) · Zbl 0789.57003
[26] Moran, M. A., Finite-dimensionality of \(\mathcal{Z} \)-boundaries, Groups Geom. Dyn., 10, 2, 819-824 (2016) · Zbl 1348.55003
[27] Scott, P.; Wall, C. T.C., Topological methods in group theory, (Homological Group Theory. Homological Group Theory, London Math. Soc. Lecture Notes (1979), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 137-204 · Zbl 0423.20023
[28] Tirel, C. J., \( \mathcal{Z} \)-structures on product groups, Algebraic Geom. Topol., 11, 2587-2625 (2011) · Zbl 1232.57002
[29] West, J. E., Factoring the Hilbert cube, Bull. Am. Math. Soc., 76, 116-120 (1970) · Zbl 0191.21903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.