×

Sign-changing blowing-up solutions for the critical nonlinear heat equation. (English) Zbl 1469.35054

Summary: Let \(\Omega\) be a smooth bounded domain in \(\mathbb{R}^n\) and denote the regular part of the Green function on \(\Omega\) with Dirichlet boundary condition by \(H(x,y)\). Assume the integer \(k_0\) is sufficiently large, \(q\in \Omega\) and \(n\geq5\). For \(k\geq k_0\) we prove that there exist initial data \(u_0\) and smooth parameter functions \(\zeta (t)\to q\) and \(0< \mu (t)\to 0\) for \(t\to+\infty\) such that the solution \(u_q\) of the critical nonlinear heat equation \[\begin{cases} u_t=\Delta u+ |u|^{\frac{4}{n-2}}u \quad & \text{in }\Omega\times(0,\infty) \\ u=0\quad & \text{on } \partial\Omega\times(0,\infty) \\ u(\cdot,0)=u_0 \quad & \text{in } \Omega \end{cases}\] has the form \[ u_q(x,t)\approx \mu(t)^{-\frac{n-2}{2}}\left(Q_k \left(\frac{x-\zeta(t)}{\mu(t)} \right)-H(x,t) \right), \] where the profile \(Q_k\) is the non-radial sign-changing solution of the Yamabe equation \[ \Delta Q+ |Q|^{\frac{4}{2-n}}Q=0\text{ in }\mathbb{R}^n, \] constructed in [the first author et al., J. Differ. Equations 251, No. 9, 2568–2597 (2011; Zbl 1233.35008)]. In dimension 5 and 6 we also investigate the stability of \(u_q(x,t)\).

MSC:

35B44 Blow-up in context of PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
35K58 Semilinear parabolic equations
35J08 Green’s functions for elliptic equations
35J61 Semilinear elliptic equations

Citations:

Zbl 1233.35008

References:

[1] C. COLLOT, F. MERLE and P. RAPHAËL, Dynamics near the ground state for the energy critical nonlinear heat equation in large dimensions, Comm. Math. Phys. 352 (2017), 215-285. · Zbl 1401.35178
[2] C. CORTAZAR, M. DEL PINO and M. MUSSO, Green’s function and infinite-time bubbling in the critical nonlinear heat equation, J. Eur. Math. Soc. (JEMS), to appear. · Zbl 1432.35121
[3] J. DÁVILA, M. DEL PINO and J. WEI, Singularity formation for the two-dimensional har-monic map flow into S 2 , arXiv:1702.05801.
[4] J. DÁVILA, M. DEL PINO, M. MUSSO and J. WEI, Gluing methods for vortex dynamics in Euler flows, arXiv:1803.00066. · Zbl 1439.35382
[5] M. DEL PINO, P. DASKALOPOULOS and N. SESUM, Type II ancient compact solutions to the Yamabe flow, J. Reine Angew. Math. 738 (2018), 1-71. · Zbl 1472.53102
[6] M. DEL PINO, M. KOWALCZYK and J. WEI, Concentration on curves for nonlinear Schrödinger equations, Comm. Pure Appl. Math. 60 (2007), 113-146. · Zbl 1123.35003
[7] M. DEL PINO, M. KOWALCZYK and J. WEI, On De Giorgi’s conjecture in dimension N 9, Ann. of Math. (2) 174 (2011), 1485-1569. · Zbl 1238.35019
[8] M. DEL PINO, M. KOWALCZYK and J. WEI, Entire solutions of the Allen-Cahn equation and complete embedded minimal surfaces of finite total curvature in R 3 , J. Differential Geom. 93 (2013), 67-131. · Zbl 1275.53015
[9] M. DEL PINO, M. MUSSO, F. PACARD and A. PISTOIA, Large energy entire solutions for the Yamabe equation, J. Differential Equations, 251 (2011), 2568-2597. · Zbl 1233.35008
[10] M. DEL PINO, M. MUSSO, F. PACARD and A. PISTOIA, Torus action on S n and sign changing solutions for conformally invariant equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 12 (2013), 209-237. · Zbl 1267.53040
[11] M. DEL PINO, M. MUSSO and J. WEI, Type II blow-up in the 5-dimensional energy critical heat equation, Acta Math. Sin. 35 (2019), 1027-1042. · Zbl 1417.35074
[12] M. DEL PINO, M. MUSSO and J. WEI, Infinite-time blow-up for the 3-dimensional energy critical heat equation, Anal. PDE 13 (2020), 215-274. · Zbl 1435.35081
[13] R. DONNINGER and J. KRIEGER, Nonscattering solutions and blow-up at infinity for the critical wave equation, Math. Ann. 357 (2013), 89-163. · Zbl 1280.35135
[14] W. DING, On a conformally invariant elliptic equation on R n , Comm. Math. Phys. 107 (1986), 331-335. · Zbl 0608.35017
[15] T. DUYCKAERTS, C. KENIG and F. MERLE, Solutions of the focusing nonradial critical wave equation with the compactness property, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 15 (2016), 731-808. · Zbl 1348.35141
[16] T. DUYCKAERTS, H. JIA, C. KENIG and F. MERLE, Soliton resolution along a sequence of times for the focusing energy critical wave equation, Geom. Funct. Anal. 27 (2017), 798-862. · Zbl 1391.35276
[17] T. DUYCKAERTS, C. KENIG and F. MERLE, Universality of the blow-up profile for small type II blow-up solutions of the energy-critical wave equation: the nonradial case, J. Eur. Math. Soc. (JEMS) 14 (2012), 1389-1454. · Zbl 1282.35088
[18] H. FUJITA, On the blowing up of solutions of the Cauchy problem for u t = 1u + u 1+↵ , J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109-124. · Zbl 0163.34002
[19] Y. GIGA and R. V. KOHN, Characterizing blowup using similarity variables, Indiana Univ. Math. J. 36 (1987), 1-40. · Zbl 0601.35052
[20] Y. GIGA and R. V. KOHN, Asymptotically self-similar blow-up of semilinear heat equa-tions, Comm. Pure Appl. Math. 38 (1985), 297-319. · Zbl 0585.35051
[21] Y. GIGA and R. V. KOHN, Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math. 42 (1989), 845-884 · Zbl 0703.35020
[22] Y. GIGA, S. MATSUI and S. SASAYAMA, Blow up rate for semilinear heat equations with subcritical nonliearity, Indiana Univ. Math. J. 53 (2004), 483-514. · Zbl 1058.35096
[23] Y. GIGA, S. MATSUI and S. SASAYAMA, On blow-up rate for sign-changing solutions in a convex domain, Math. Methods Appl. Sci. 27 (2004), 1771-1782. · Zbl 1066.35043
[24] C. GUI, W. NI and X. WANG, On the stability and instability of positive steady states of a semilinear heat equation in R n , Comm. Pure Appl. Math. 45 (1992), 1153-1181. · Zbl 0811.35048
[25] J. KRIEGER, W. SCHLAG and D. TATARU, Slow blow-up solutions for theḢ 1 (R 3 ) critical focusing semilinear wave equation, Duke Math. J. 147 (2009), 1-53. · Zbl 1170.35066
[26] E. HEBEY, “Introductionà l”analyse non linéaire sur les variétées”, Diderotéditeur, Paris, 1997. · Zbl 0918.58001
[27] H. MATANO and F. MERLE, Threshold and generic type I behaviors for a supercritical nonlinear heat equation, J. Funct. Anal. 261 (2011), 716-748. · Zbl 1223.35088
[28] H. MATANO and F. MERLE, Classification of type I and type II behaviors for a supercritical nonlinearheat equation, J. Funct. Anal. 256 (2009), 992-1064. · Zbl 1178.35084
[29] H. MATANO and F. MERLE, On nonexistence of type II blowup for a supercritical nonlinear heat equation, Comm. Pure Appl. Math. 57 (2004), 1494-1541. · Zbl 1112.35098
[30] M. MEDINA, M. MUSSO and J. WEI, Desingularization of Clifford torus and nonradial solutions to the Yamabe problem with maximal rank, J. Funct. Anal. 276 (2019), 2470-2523. · Zbl 1439.35175
[31] F. MERLE and H. ZAAG, Stability of the blow-up profile for equations of the type u t = 1u + |u| p 1 u, Duke Math. J. 86 (1997), 143-195. · Zbl 0872.35049
[32] M. MUSSO, Y. SIRE, J. WEI, Y. ZHENG and Y. ZHOU, Infinite time blow-up for the fractional heat equation with critical exponent, Math. Ann. 375 (2019), 361-424. · Zbl 1452.35244
[33] M. MUSSO and J. WEI, Nondegeneracy of nodal solutions to the critical Yamabe problem, Comm. Math. Phys. 340 (2015), 1049-1107. · Zbl 1328.35047
[34] M. MUSSO and J. WEI, Sign-changing blowing-up solutions for supercritical Bahri-Coron’s problem, Calc. Var. Partial Differential Equations 55 (2016), Ant. 1, 39 pp. · Zbl 1408.35007
[35] P. POLÁCIK and P. QUITTNER, A Liouville-type theorem and the decay of radial solutions of a semilinear heat equation, Nonlinear Anal. 64 (2006), 1679-1689. · Zbl 1092.35045
[36] P. POLÁCIK, P. QUITTNER and P. SOUPLET, Singularity and decay estimates in super-linear problems via Liouville-type theorems, Part II: Parabolic equations, Indiana Univ. Math. J. 56 (2007), 879-908. · Zbl 1122.35051
[37] P. POLÁCIK and E. YANAGIDA, On bounded and unbounded global solutions of a super-critical semilinear heat equation, Math. Ann. 327 (2003), 745-771. · Zbl 1055.35055
[38] P. POLÁCIK and E. YANAGIDA, Global unbounded solutions of the Fujita equation in the intermediate range, Math. Ann. 360 (2014), 255-266. · Zbl 1319.35109
[39] P. QUITTNER and P. SOUPLET, “Superlinear Parabolic Problems”, Birkhäuser Verlag, Basel, 2007. · Zbl 1128.35003
[40] R. SCHOEN and S.-T. YAU, “Lectures on Differential Geometry”, Conference Proceedings and Lecture Notes in Geometry and Topology, I, International Press, Cambridge, MA, 1994. · Zbl 0830.53001
[41] R. SCHWEYER, Type II blow-up for the four dimensional energy critical semilinear heat equation, J. Funct. Anal. 263 (2012), 3922-3983. · Zbl 1270.35137
[42] Y. SIRE, J. WEI and Y. ZHENG, Infinite time blow-up for half-harmonic map flow from R into S 1 , Amer. J. Math., to appear, arXiv:1711.05387.
[43] Q. ZHANG, “The Existence of Multiple-point Blow-up Sign-changing Solutions at Infinite Time for Nonlinear Parabolic Equations”, Master’s degree thesis, University of Chinese Academy of Sciences, 2018. Department of Mathematical Sciences University of Bath Bath BA2 7AY, United Kingdom and Departamento de Ingeniería Matemática-CMM Universidad de Chile Santiago 837-0456, Chile m.delpino@bath.ac.uk m.musso@bath.ac.uk Department of Mathematics University of British Columbia Vancouver B.C., Canada, V6T 1Z2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.