×

Spherical orbit closures in simple projective spaces and their normalizations. (English) Zbl 1226.14061

Let \(G\) be a semisimple algebraic group over an algebraically closed field of characteristic 0. A \(G\)-variety is spherical if it is normal and if it contains an open \(B\)-orbit, where \(B\subset G\) is a Borel subgroup; in this case there are a finite number of \(B\)-orbits (resp. of \(G\)-orbits). Examples of spherical varieties are the symmetric varieties and the toric varieties (if one allow \(G\) to be only reductive). Homogeneous symmetric varieties are spaces \(G/H\), where \(G^{\sigma}\subset H\subset N(G^{\sigma})\) and \(G^{\sigma}\) is the set of fixed points by an involution \(\sigma\) of \(G\). Another important class of spherical varieties are the wonderful varieties, namely smooth projective \(G\)-varieties \(M\) with an open orbit and such that: i) the complement of the open orbit is a normal crossing divisor with smooth components; ii) the closure of the orbits are the intersections of such components; iii) the intersection of all these components is the unique closed orbit of \(M\). In particular, flag varieties are wonderful. Moreover, any spherical homogeneous space \(G/H\) with \(H\) self-normalizing has a (unique) wonderful completion by C. De Concini and C. Procesi [in: Invariant theory, Proc. 1st 1982 Sess. C.I.M.E., Montecatini/Italy, Lect. Notes Math. 996, 1–44 (1983; Zbl 0581.14041)] in the symmetric case and by F. Knop, [J. Am. Math. Soc. 9, No. 1, 153–174 (1996; Zbl 0862.14034)] in the general case.
However, there are many natural examples of completions of a spherical homogeneous space which do not need to be normal. For example, consider the projective space \( \mathbb{P}(V)\) associated to a simple \(G\)-module \(V\). P. Bravi and D. Luna [J. Algebra 329, No. 1, 4–51 (2011; Zbl 1231.14040)] proved that any \(G\)-orbit \(G[v]\) in \(\mathbb{P}(V)\) has a wonderful completion \( M\) and that such completion dominates the closure \(X\) of \(G[v]\) in \(\mathbb{P}(V)\). Thus, \(M\) dominates also the normalization \(\widetilde{X}\) of \(X\). In general \(X\) is non-normal; however, in [D. A. Timashev, Sb. Math. 194, No. 4, 589–616 (2003); translation from Mat. Sb. 194, No. 4, 119–146 (2003; Zbl 1074.14043)] it has been proved that there is a one-to-one correspondence between the orbits of \(X\) and the orbits of \(\widetilde{X}\). Moreover, A. Maffei has proved [Transform. Groups 14, No. 1, 183–194 (2009; Zbl 1185.14044)] that, when \(G/H\) is symmetric, the normalization morphism \(q: \widetilde{X}\rightarrow X\) is a bijective. The author of this work is interested to understand the bijectivity of \(q\) when \(G/H\) is only spherical.
First, the author gives a description of the set of orbits of \(X\) (and \(\widetilde{X}\)) by using the morphism \(M \rightarrow\widetilde{X}\rightarrow X\). This leads to a combinatorial criterion to establish whether or not two orbits in \(M\) map onto the same orbit on \(X\) which, in particular, implies that different orbits in \(X\) are never \(G\)-equivariantly isomorphic. Moreover, he gives a combinatorial criterion so that the restriction of \(q\) to a fixed orbit of \(\widetilde{X}\) is an isomorphism. This criterion can be simplified when \(M\) is strict, i.e. all the isotropy subgroup of \(M\) are self-normalizing. The strict wonderful varieties, introduced by G. Pezzini [Math. Z. 255, No. 4, 793–812 (2007; Zbl 1122.14036)], are those wonderful varieties which can be embedded in a simple projective space. This leads the author to prove the main result of this work: a combinatorial criterion for \(q\) to be bijective under the assumption that \(M\) is strict. It is given in term of the spherical system of \(M\) (and of the \(B\)-stable divisor which gives the morphism \(M\rightarrow X\subset\mathbb{P}(V)\)). The condition of bijectivity involves the double links of the Dynkin diagram of \(G\) and it is trivially fulfilled whenever \(G\) is simply laced or \(M\) is symmetric. The main examples of strict wonderful varieties where bijectivity fails arise from the context of wonderful model varieties introduced by D. Luna [J. Algebra 313, No. 1, 292–319 (2007; Zbl 1116.22006)]. A model space for \(G\) is a quasi-affine homogeneous space whose coordinate ring contains every simple \(G\)-module with multiplicity 1. In the previous work are classified the model spaces and it is introduced the wonderful model variety, whose orbits naturally parametrize, up to isomorphism, the model spaces for \(G\): every orbit of this last variety is of the shape \(G/N(H)\) where \(G/H\) is a model space.

MSC:

14M17 Homogeneous spaces and generalizations
14L30 Group actions on varieties or schemes (quotients)

References:

[1] D. Akhiezer, Equivariant completions of homogeneous algebraic varieties by homogeneous divisors, Ann. Global Anal. Geom. 1 (1983), no. 1, 49–78. · Zbl 0537.14033 · doi:10.1007/BF02329739
[2] P. Bravi, Wonderful varieties of type E, Represent. Theory 11 (2007), 174–191. · Zbl 1135.14037 · doi:10.1090/S1088-4165-07-00318-4
[3] P. Bravi, Primitive spherical systems, preprint (2009), arXiv:math.AG/0909.3765v2, 70 pp. · Zbl 1279.14067
[4] P. Bravi and S. Cupit-Foutou, Classification of strict wonderful varieties, Ann. Inst. Fourier (Grenoble) 60 (2010), no. 2, 641–681. · Zbl 1195.14068 · doi:10.5802/aif.2535
[5] P. Bravi, J. Gandini, A. Maffei, A. Ruzzi, Normality and nonnormality of group compactifications in simple projective spaces, preprint (2010), arXiv:math.AG/1005.2478v2, 16 pp. (to appear in Ann. Inst. Fourier (Grenoble)). · Zbl 1300.14054
[6] P. Bravi, D. Luna, An introduction to wonderful varieties with many examples of type F4, preprint (2008), arXiv:math.AG/0812.2340v2, 65 pp. (to appear in J. Algebra). · Zbl 1231.14040
[7] P. Bravi, G. Pezzini, Wonderful varieties of type D, Represent. Theory 9 (2005), 578–637. · Zbl 1222.14099 · doi:10.1090/S1088-4165-05-00260-8
[8] P. Bravi, G. Pezzini, Wonderful varieties of type B and C, preprint (2009), arXiv:mathAG/0909.3771v1, 24 pp.
[9] M. Brion, Groupe de Picard et nombres caractéristiques des variétés sphériques, Duke Math. J. 58 (1989), no. 2, 397–424. · Zbl 0701.14052 · doi:10.1215/S0012-7094-89-05818-3
[10] M. Brion, Variétés sphériques, Notes de la session de la S.M.F. Opérations hamiltoniennes et opérations de groupes algébriques, Grenoble (1997), http://www-fourier.ujf-grenoble.fr/\(\sim\)mbrion/spheriques.pdf, 59 pp.
[11] M. Brion, The total coordinate ring of a wonderful variety, J. Algebra 313 (2007), no. 1, 61–99. · Zbl 1123.14024 · doi:10.1016/j.jalgebra.2006.12.022
[12] M. Brion, D. Luna, Th. Vust, Espaces homogenès sphériques, Invent. Math. 84 (1986), no. 3, 617–632. · Zbl 0604.14047 · doi:10.1007/BF01388749
[13] M. Brion, F. Pauer, Valuations des espaces homogenès sphériques, Comment. Math. Helv. 62 (1987), no. 2, 265–285. · Zbl 0627.14038 · doi:10.1007/BF02564447
[14] S. Cupit-Foutou, Wonderful varieties: A geometrical realization, preprint (2009), arXiv:math.AG/0907.2852v3, 37 pp. · Zbl 1086.14039
[15] C. De Concini, C. Procesi, Complete symmetric varieties, in: Invariant Theory (Montecatini, 1982), Lecture Notes in Mathematics, Vol. 996, Springer-Verlag, Berlin, 1983, pp. 1–44. · Zbl 0581.14041
[16] A. Foschi, Variétés magnifiques et polytopes moment, PhD thesis, Institut Fourier, Université J. Fourier, Grenoble, 1998.
[17] F. Knop, The Luna–Vust Theory of spherical embeddings, in: Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), Manoj Prakashan, Madras, 1991, 225–249. · Zbl 0812.20023
[18] F. Knop, On the set of orbits for a Borel subgroup, Comment. Math. Helv. 70 (1995), no. 2, 285–309. · Zbl 0828.22016 · doi:10.1007/BF02566009
[19] F. Knop, Automorphisms, root systems, and compactifications of homogeneous varieties, J. Amer. Math. Soc. 9 (1996), no. 1, 153–174. · Zbl 0862.14034 · doi:10.1090/S0894-0347-96-00179-8
[20] I. Losev, Uniqueness property for spherical homogeneous spaces, Duke Math. J. 147 (2009), no. 2, 315–343. · Zbl 1175.14035 · doi:10.1215/00127094-2009-013
[21] D. Luna, Toute variété magnifique est sphérique, Transform. Groups 1 (1996), no. 3, 249–258. · Zbl 0912.14017 · doi:10.1007/BF02549208
[22] D. Luna, Variétés sphériques de type A, Publ. Math. Inst. Hautes Études Sci. 94 (2001), 161–226. · Zbl 1085.14039 · doi:10.1007/s10240-001-8194-0
[23] D. Luna, La variété magnifique modèle, J. Algebra 313 (2007), no. 1, 292–319. · Zbl 1116.22006 · doi:10.1016/j.jalgebra.2006.10.042
[24] A. Maffei, Orbits in degenerate compactifications of symmetric varieties, Transform. Groups 14 (2009), no. 1, 183–194. · Zbl 1185.14044 · doi:10.1007/s00031-008-9040-y
[25] G. Pezzini, Wonderful varieties of type C, PhD thesis, Università di Roma ”La Sapienza”, Roma, 2003.
[26] G. Pezzini, Simple immersions of wonderful varieties, Math. Z. 255 (2007), no. 4, 793–812. · Zbl 1122.14036 · doi:10.1007/s00209-006-0050-y
[27] Д. А. Тимашев, Эквиварианmные компакmификации редукmивных групп, Мат. сб. 194 (2003), no. 4, 119–146. Engl. transl.: D. A. Timashev, Equivariant compactifications of reductive groups, Sb. Math. 194 (2003), no. 4, 589–616.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.