×

Norm inflation for the generalized Boussinesq and Kawahara equations. (English) Zbl 1368.35250

Summary: We consider ill-posedness of the Cauchy problem for the generalized Boussinesq and Kawahara equations. We prove norm inflation with general initial data, an improvement over the ill-posedness results by D.-A. Geba et al. [ibid. 95, 404–413 (2014; Zbl 1286.35228)] for the generalized Boussinesq equations and by T. Kato [Adv. Differ. Equ. 16, No. 3–4, 257–287 (2011; Zbl 1298.35176)] for the Kawahara equation.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
35R25 Ill-posed problems for PDEs
35Q53 KdV equations (Korteweg-de Vries equations)

References:

[1] Bejenaru, I.; Tao, T., Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrödinger equation, J. Funct. Anal., 233, 1, 228-259 (2006) · Zbl 1090.35162
[2] Bona, J. L.; Sachs, R. L., Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation, Comm. Math. Phys., 118, 1, 15-29 (1988) · Zbl 0654.35018
[3] Chen, W.; Guo, Z., Global well-posedness and I method for the fifth order Korteweg-de Vries equation, J. Anal. Math., 114, 121-156 (2011) · Zbl 1238.35127
[4] Chen, W.; Li, J.; Miao, C.; Wu, J.; Jiahong, Low regularity solutions of two fifth-order KdV type equations, J. Anal. Math., 107, 221-238 (2009) · Zbl 1181.35229
[5] Choffrut, A.; Pocovnicu, O., Ill-posedness of the cubic nonlinear half-wave equation and other fractional NLS on the real line, Int. Math. Res. Not. (2016)
[6] Cui, S.; Deng, D.; Tao, S., Global existence of solutions for the Cauchy problem of the Kawahara equation with \(L^2\) initial data, Acta Math. Sin. (Engl. Ser.), 22, 5, 1457-1466 (2006) · Zbl 1105.35105
[7] Falk, F.; Laedke, E. W.; Spatschek, K. H., Stability of solitary-wave pluses in shape-memory alloy, Phys. Rev. B, 36, 3031-3041 (1987)
[8] Farah, L. G., Local solutions in Sobolev spaces and unconditional well-posedness for the generalized Boussinesq equation, Commun. Pure Appl. Anal., 8, 5, 1521-1539 (2009) · Zbl 1180.35365
[9] Farah, L. G., Local solutions in Sobolev spaces with negative indices for the good Boussinesq equation, Comm. Partial Differential Equations, 34, 1-3, 52-73 (2009) · Zbl 1173.35682
[10] Geba, D.; Himonas, A. A.; Karapetyan, D., Ill-posedness results for generalized Boussinesq equations, Nonlinear Anal., 95, 404-413 (2014) · Zbl 1286.35228
[11] Huh, H.; Machihara, S.; Okamoto, M., Well-posedness and ill-posedness of the Cauchy problem for the generalized Thirring model, Differential Integral Equations, 29, 5-6, 401-420 (2016) · Zbl 1363.35301
[12] Iwabuchi, T.; Ogawa, T., Ill-posedness for nonlinear Schrödinger equation with quadratic non-linearity in low dimensions, Trans. Amer. Math. Soc., 367, 4, 2613-2630 (2015) · Zbl 1310.35216
[13] Iwabuchi, T.; Uriya, K., Ill-posedness for the quadratic nonlinear Schrödinger equation with nonlinearity \(\mid u \mid^2\), Commun. Pure Appl. Anal., 14, 4, 1395-1405 (2015) · Zbl 1331.35320
[14] Kato, T., Local well-posedness for Kawahara equation, Adv. Differential Equations, 16, 3-4, 257-287 (2011) · Zbl 1298.35176
[15] Kawahara, T., Oscillatory solitary waves in dispersive media, J. Phys. Soc. Japan, 33, 260-264 (1972)
[17] Kishimoto, N., Sharp local well-posedness for the “good” Boussinesq equation, J. Differential Equations, 254, 6, 2393-2433 (2013) · Zbl 1266.35006
[18] Kishimoto, N.; Tsugawa, K.; Kotaro, Local well-posedness for quadratic nonlinear Schrödinger equations and the good Boussinesq equation, Differential Integral Equations, 23, 5-6, 463-493 (2010) · Zbl 1240.35513
[19] Linares, F., Global existence of small solutions for a generalized Boussinesq equation, J. Differential Equations, 106, 2, 257-293 (1993) · Zbl 0801.35111
[20] Machihara, S.; Okamoto, M., Ill-posedness of the Cauchy problem for the Chern-Simons-Dirac system in one dimension, J. Differential Equations, 258, 1356-1394 (2015) · Zbl 1307.35246
[21] Machihara, S.; Okamoto, M., Remarks on ill-posedness for the Dirac-Klein-Gordon system, Dyn. Partial Differ. Equ., 13, 3, 179-190 (2016) · Zbl 1347.35210
[22] Machihara, S.; Okamoto, M., Sharp well-posedness and ill-posedness for the Chern-Simons-Dirac system in one dimension, Int. Math. Res. Not. IMRN, 6, 1640-1694 (2016) · Zbl 1339.35263
[23] Oh, T., A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces, Funkcial. Ekvac. (2017), (in press) · Zbl 1382.35273
[24] Oh, T.; Whang, Y., On the ill-posedness of the cubic nonlinear Schrödinger equation on the circle, Ann. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (2017), (in press)
[25] Wang, H.; Cui, S. B.; Deng, G., Global existence of solutions for the Kawahara equation in Sobolev spaces of negative indices, Acta Math. Sin. (Engl. Ser.), 23, 8, 1435-1446 (2007) · Zbl 1128.35093
[26] Xia, B., Generic ill-posedness for wave equation of power type on 3D torus
[27] Zakharov, V. E., On stochastization of one-dimensional chains of nonlinear oscillators, Sov. Phys.—JETP, 38, 108-110 (1974)
[28] Zheng, J., Well-posedness for the fourth-order Schrödinger equations with quadratic nonlinearity, Adv. Differential Equations, 16, 5-6, 467-486 (2011) · Zbl 1232.35160
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.