×

Computable eigenvalue bounds for rank-\(k\) perturbations. (English) Zbl 1195.15019

The authors investigate lower bounds for the eigenvalues of low rank Hermitian perturbations of Hermitian matrices and for the singular values of low rank perturbations of general matrices. They show that, for the smallest eigenvalue, some earlier results of Weyl and of I. C. F. Ipsen and B. Nadler [SIAM J. Matrix Anal. Appl. 31, 40–53 (2009; Zbl 1189.15022)] are the first two of a sequence of increasingly tight bounds. Generally the \(q\)th element of the sequence is an eigenvalue of a \(q\times q\) matrix.

MSC:

15A42 Inequalities involving eigenvalues and eigenvectors
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
15B57 Hermitian, skew-Hermitian, and related matrices

Citations:

Zbl 1189.15022

Software:

IPSEN
Full Text: DOI

References:

[1] Matrix market. <http://www.math.nist.gov/MatrixMarket/>.; Matrix market. <http://www.math.nist.gov/MatrixMarket/>.
[2] Arbenz, P.; Golub, G. H., QR-like algorithms for symmetric arrow matrices, SIAM J. Matrix Anal. Appl., 13, 655-658 (1992) · Zbl 0752.65029
[3] Berry, M. W.; Dumais, S. T.; O’Brien, G. W., Using linear algebra for intelligent information retrieval, SIAM Rev., 37, 4, 573-595 (1995) · Zbl 0842.68026
[4] Bunch, J. R.; Nielsen, C. P., Updating the singular value decomposition, Numer. Math., 31, 2, 111-129 (1978) · Zbl 0421.65028
[5] Bunch, J. R.; Nielsen, C. P.; Sorensen, D. C., Rank-one modification of the symmetric eigenproblem, Numer. Math., 31, 1, 31-48 (1978) · Zbl 0369.65007
[6] Chandrasekaran, S.; Manjunath, B. S.; Wang, Y. F.; Winkeler, J.; Zhang, H., An eigenspace update algorithm for image analysis, Graph. Model Image Process., 59, 5, 321-332 (1997)
[7] Cuppen, J. J.M., A divide and conquer method for the symmetric tridiagonal eigenproblem, Numer. Math., 36, 2, 177-195 (1980) · Zbl 0431.65022
[8] Golub, G. H., Some modified matrix eigenvalue problems, SIAM Rev., 15, 2, 318-334 (1973) · Zbl 0254.65027
[9] Ipsen, I. C.F.; Nadler, B., Refined perturbation bounds for eigenvalues of Hermitian and non-Hermitian matrices, SIAM J. Matrix Anal. Appl., 31, 1, 40-53 (2009) · Zbl 1189.15022
[10] O’Leary, D. P.; Stewart, G. W., Computing the eigenvalues and eigenvectors of arrowhead matrices, J. Comput. Phys., 90, 497-505 (1990) · Zbl 0716.65033
[11] Parlett, B.; Strang, G., Matrices with prescribed Ritz values, Linear Algebra Appl., 428, 7, 725-1739 (2008) · Zbl 1141.15010
[12] Parlett, B. N., The Symmetric Eigenvalue Problem (1998), SIAM · Zbl 0885.65039
[13] Stewart, G. W.; Sun, J. G., Matrix Perturbation Theory (1990), Academic Press · Zbl 0706.65013
[14] Tougas, J.; Spiteri, R., Updating the partial singular value decomposition in latent semantic indexing, Comput. Statist. Data Anal., 52, 1, 174-183 (2007) · Zbl 1452.62131
[15] Wilkinson, J., The Algebraic Eigenvalue Problem (1965), Oxford University Press · Zbl 0258.65037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.