×

On graphs and valuations. (English) Zbl 1320.16022

Let \(D\) be an infinite division ring (associative), \(D^*\) be its multiplicative group, \(N\) a proper normal finite index subgroup of \(D^*\) containing \(-1\). The paper under review considers the problem of finding conditions that guarantee the existence of a valuation on \(D\) with nice properties. Several methods to detect valuations are known in case \(D\) is commutative, notably the rigidity method based on the Milnor \(K\)-groups of \(D\) relative to the subgroup \(N\leq D^*\) [see, e.g., I. Efrat, Isr. J. Math. 172, 75-92 (2009; Zbl 1197.19001)]. When \(D\) is noncommutative, new techniques to solve this problem emerged in the last two decades, and they were based on the commuting graph of \(D^*/N\) [see Y. Segev, Ann. Math. (2) 149, No. 1, 219-251 (1999; Zbl 0935.20009); A. S. Rapinchuk and Y. Segev, Invent. Math. 144, No. 3, 571-607 (2001; Zbl 0999.16016); and A. S. Rapinchuk et al., J. Am. Math. Soc. 15, No. 4, 929-978 (2002; Zbl 1008.16018)].
The paper under review unifies these two approaches, by considering valuation graphs (\(V\)-graphs), say \(\Delta\), on \(D^*/N\) and how they lead to valuations. Using the axioms of a \(V\)-graph in conjunction with additional hypotheses, such as assumptions on its diameter \(\text{diam}(\Delta)\), the authors produce a surjective group homomorphism \(\varphi\colon N\to\Gamma\) to a partially ordered group \(\Gamma\). They show that \(\varphi\) possesses certain special properties making it what is called in the paper a strongly levelled map, in case \(\text{diam}(\Delta)\geq 3\), a strong valuation-like map, when \(\text{diam}(\Delta)\geq 4\), and a strong valuation-like map of \(s\)-level zero, if \(\text{diam}(\Delta)\geq 5\).
Secondly, it is proved that if \(D\) is commutative or is a finite-dimensional algebra over a field \(E\) of finite transcendence degree over its prime subfield, and if \(D^*/N\) supports a \(V\)-graph \(\Delta'\) of diameter \(\geq 4\), then there exists a (nontrivial) valuation \(v\) on \(D\), such that \(N\) is open in \(D^*\) with respect to the topology defined by \(v\).
The third main result of the reviewed paper concerns the case where \([D:E]<\infty\), \(E\) is infinite and satisfies the above-noted conditions, the centre \(Z(D)\) is a separable extension of \(E\), the image of \(N\cap E^*\) under \(\varphi\) is an ordered subgroup of \(\Gamma\), and \(\text{diam}(\Delta')\geq 4\). It shows that then \(E\) has a real-valued valuation \(v\), such that \(N\cap E^*\) is open in the \(v\)-adic topology on \(k\), there is a nonempty finite set \(T\) of valuations of \(Z(D)\) extending \(v\), such that each \(w\in T\) is uniquely extendable to a valuation \(w'\) on \(D\), and \(N\) is open in the \(T'\)-adic topology of \(D^*\), where \(T'=\{w':w\in T\}\).

MSC:

16W60 Valuations, completions, formal power series and related constructions (associative rings and algebras)
05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
16K20 Finite-dimensional division rings
12J10 Valued fields
16U60 Units, groups of units (associative rings and algebras)
19D45 Higher symbols, Milnor \(K\)-theory

References:

[1] Arason J.K., Elman R., Jacob B.: Rigid elements, valuations, and realization of Witt rings. J. Algebra 110, 449-467 (1987) · Zbl 0629.10016 · doi:10.1016/0021-8693(87)90057-3
[2] Becker E.: Summen n-ter Potenzen in Körpern. J. Reine Angew. Math. 307(308), 8-30 (1979) · Zbl 0398.12012
[3] Bergelson V., Shapiro D.B.: Multiplicative subgroups of finite index in a ring. Proc. Am. Math. Soc. 116, 885-896 (1992) · Zbl 0784.12002 · doi:10.1090/S0002-9939-1992-1095220-5
[4] Bogomolov F., Tschinkel Y.: Reconstruction of function fields. GAFA 18, 400-462 (2008) · Zbl 1155.14016
[5] Bogomolov, F.; Tschinkel, Y.; Caporaso, L. (ed.); McKernan, J. (ed.); Mustata, M. (ed.); Popa, M. (ed.), Introduction to birational anabelian geometry, 17-63 (2012), Cambridge · Zbl 1290.14017
[6] Bogomolov F., Tschinkel Y.: Galois theory and projective geometry. Commun. Pure Appl. Math. 66, 1335-1359 (2013) · Zbl 1311.11105 · doi:10.1002/cpa.21466
[7] Bourbaki N.: Commutative Algebra, ch. 1-7. Springer, Berlin (1989) · Zbl 0666.13001
[8] Cohn P.M.: On extending valuations in division algebras. Stud. Sci. Math. Hungar. 16, 65-70 (1981) · Zbl 0508.16018
[9] Efrat I.: Construction of valuations from K-theory. Math. Res. Lett. 6, 335-343 (1999) · Zbl 0963.12003 · doi:10.4310/MRL.1999.v6.n3.a7
[10] Efrat I.: Compatible valuations and generalized Milnor K-theory. Trans. Am. Math. Soc. 359, 4695-4709 (2007) · Zbl 1126.19003 · doi:10.1090/S0002-9947-07-04132-3
[11] Efrat I.: Valuations, Orderings, and Milnor K-Theory. Mathematical Surveys and Monographs, vol. 124. American Mathematical Society, Providence (2006) · Zbl 1103.12002 · doi:10.1090/surv/124
[12] Efrat I.: Valuations and diameters of Milnor K-rings. Isr. J. Math. 172, 75-92 (2009) · Zbl 1197.19001 · doi:10.1007/s11856-009-0064-3
[13] Endler O.: Valuation Theory. Springer, Berlin (1972) · Zbl 0257.12111 · doi:10.1007/978-3-642-65505-0
[14] Engler A.J., Prestel A.: Valued Fields. Springer, Berlin (2005) · Zbl 1128.12009
[15] Hwang Y.S., Jacob B.: Brauer group analogues of results relating the Witt ring to valuations and Galois theory. Can. J. Math. 47, 527-543 (1995) · Zbl 0857.12002 · doi:10.4153/CJM-1995-029-4
[16] Jacob B.: On the structure of Pythagorean fields. J. Algebra 68, 247-267 (1981) · Zbl 0457.10007 · doi:10.1016/0021-8693(81)90263-5
[17] Jacob B.: Fans, real valuations, and hereditarily-pythagorean fields. Pac. J. Math. 93, 95-105 (1981) · Zbl 0485.12016 · doi:10.2140/pjm.1981.93.95
[18] Jacob B., Wadsworth A.R.: A new construction of noncrossed division algebras. Tran. Am. Math. Soc. 293, 693-721 (1986) · Zbl 0597.16016 · doi:10.1090/S0002-9947-1986-0816320-X
[19] Koenigsmann J.: From p-rigid elements to valuations (with a Galois-characterization of p-adic fields). J. Reine Angew. Math. 465, 165-182 (1995) · Zbl 0824.12006
[20] Lang S.: Algebra, 3rd edn, GTM 211. Springer, Berlin (2002) · Zbl 0984.00001
[21] Marshall M.A.: An approximation theorem for coarse V-topologies on rings. Can. Math. Bull. 37, 527-533 (1994) · Zbl 0818.12005 · doi:10.4153/CMB-1994-076-0
[22] Marubayashi H., Miyamoto H., Ueda A.: Non-Commutative Valuation Rings and Semi-Hereditary Orders. Kluwer, Dordrecht (1997) · Zbl 0887.16018 · doi:10.1007/978-94-017-2436-4
[23] Pierce R.S.: Associative Algebras, GTM 88. Springer, Berlin (1982) · Zbl 0497.16001 · doi:10.1007/978-1-4757-0163-0
[24] Platonov V.P., Rapinchuk A.S.: Algebraic Groups and Number Theory. Academic Press, New York (1993) · Zbl 0806.11002
[25] Rapinchuk A.S.: The Margulis-Platonov conjecture for SL1 , D and 2-generation of finite simple groups. Math. Z. 252, 295-313 (2006) · Zbl 1101.20027 · doi:10.1007/s00209-005-0854-1
[26] Rapinchuk A., Potapchik A.: Normal subgroups of SL1, D and the classification of finite simple groups. Proc. Indian Acad. Sci. 106, 329-336 (1996) · Zbl 0879.20027 · doi:10.1007/BF02837693
[27] Rapinchuk A.S., Segev Y.: Valuation-like maps and the congruence subgroup property. Invent. Math. 144, 571-607 (2001) · Zbl 0999.16016 · doi:10.1007/s002220100136
[28] Rapinchuk A.S., Segev Y., Seitz G.: Finite quotients of the multiplicative group of a finite dimensional division algebra are solvable. J. Am. Math. Soc. 15, 929-978 (2002) · Zbl 1008.16018 · doi:10.1090/S0894-0347-02-00393-4
[29] Rehmann U.: Zentrale Erweiterungen der speziellen linearen Gruppe eines Schiefkörpers. J. Reine Angew. Math. 301, 77-104 (1978) · Zbl 0377.20036
[30] Rehmann, U., Stuhler, U.: On K2 of finite-dimensional division algebras over arithmetical fields. Invent. Math. 50, 75-90 (1978/79) · Zbl 0378.12012
[31] Ribenboim P.: The Theory of Classical Valuations. Springer, Berlin (1999) · Zbl 0957.12005 · doi:10.1007/978-1-4612-0551-7
[32] Schilling O.F.G.: The Theory of Valuations. American Mathematical Society, Providence (1950) · Zbl 0037.30702 · doi:10.1090/surv/004
[33] Segev Y.: The commuting graph of minimal nonsolvable groups. Geom. Dedic. 88(1-3), 55-66 (2001) · Zbl 0994.20012 · doi:10.1023/A:1013180005982
[34] Segev Y.: On finite homomorphic images of the multiplicative group of a division algebra. Ann. Math. 149, 219-251 (1999) · Zbl 0935.20009 · doi:10.2307/121024
[35] Segev Y., Seitz G.M.: Anisotropic groups of type An and the commuting graph of finite simple groups. Pac. J. Math. 202, 125-226 (2002) · Zbl 1058.20015 · doi:10.2140/pjm.2002.202.125
[36] Topaz, A.: Almost-commuting-liftable subgroups of Galois groups. Preprint, available at arXiv:1202.1786 · Zbl 1407.12003
[37] Topaz, A.: Commuting-liftable subgroups of Galois groups II. Preprint, available at arXiv:1208.0583 · Zbl 1407.12003
[38] Turnwald G.: Multiplicative subgroups of finite index in rings. Proc. Am. Math. Soc. 120, 377-381 (1994) · Zbl 0795.12004 · doi:10.1090/S0002-9939-1994-1215206-9
[39] Wadsworth, A.R.: (2002) Valuation theory on finite dimensional division algebras. In: Saskatoon, S.K. (eds) Valuation Theory and Its Applications, vol. I. Fields Inst. Commun., vol. 32, pp. 385-449. American Mathematical Society, Providence, RI (1999) · Zbl 1017.16011
[40] Ware R.: Valuation rings and rigid elements in fields. Can. J. Math. 33, 1338-1355 (1981) · Zbl 0514.10015 · doi:10.4153/CJM-1981-103-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.