×

Fractional ordered Liu system with time-delay. (English) Zbl 1222.34005

Summary: The effect of delay on the chaotic behaviour has been investigated for the first time in the literature. In this regard fractional ordered Liu system [X.-Y. Wang and M.-J. Wang, Chaos 17, No. 3, 033106, 6 p. (2007; Zbl 1163.37382)] has been chosen as an example. Numerical simulations for various fractional orders corresponding to different values of delay have been carried out. It has been demonstrated that the chaotic systems can be transformed into limit cycles or stable orbits with appropriate choice of delay parameter.

MSC:

34A08 Fractional ordinary differential equations
34D20 Stability of solutions to ordinary differential equations
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
45J05 Integro-ordinary differential equations
26A33 Fractional derivatives and integrals
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations

Citations:

Zbl 1163.37382
Full Text: DOI

References:

[1] Podlubny, I., Geometric and physical interpretation of fractional integration and fractional differentiation, Fract Calc Appl Anal, 367-386 (2002) · Zbl 1042.26003
[2] Ben Adda, F., Geometric interpretation of the fractional derivative, J Fract Calculus, 11, 21-52 (1997) · Zbl 0907.26005
[3] Tenreiro Machado, J. A., Probability interpretation and frequency response of rational approximations, Commun Nonlinear Sci Numer Simul, 14, 9-10, 3492-3497 (2009)
[4] Sun, H. H.; Abdelwahad, A. A.; Onaral, B., Linear approximation of transfer function with a pole of fractional order, IEEE Trans Automat Control, 29, 441-444 (1984) · Zbl 0532.93025
[5] Schneider, W. R.; Wyss, W., Fractional diffusion and wave equations, J Math Phys, 30, 1, 134-144 (1989) · Zbl 0692.45004
[6] Mainardi, F.; Luchko, Y.; Pagnini, G., The fundamental solution of the space-time fractional diffusion equation, Fract Calculus Appl Anal, 4, 2, 153-192 (2001) · Zbl 1054.35156
[7] Agrawal, O. P., Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dynam, 29, 145-155 (2002) · Zbl 1009.65085
[8] Liu, F.; Zhuang, P.; Anh, V.; Turner, I., A fractional-order implicit difference approximation for the space-time fractional diffusion equation, ANZIM J, 47, C48-C68 (2006)
[9] Daftardar-Gejji, V.; Jafari, H., Boundary value problems for fractional diffusion-wave equations, Aust J Math Anal Appl, 3, 1-18 (2006)
[10] Daftardar-Gejji, V.; Bhalekar, S., Solving multiterm linear and non-linear diffusionwave equations of fractional order by Adomian decomposition method, Appl Math Comput, 202, 113-120 (2008) · Zbl 1147.65106
[11] Caputo, M.; Mainardi, F., A new dissipation model based on memory mechanism, Pure Appl Geophys, 91, 134147 (1971)
[12] Anastasio, T. J., The fractional-order dynamics of Brainstem Vestibulo-Oculomotor neurons, Biol Cybernet, 72, 69-79 (1994)
[13] Riewe, F., Nonconservative Lagrangian and Hamiltonian mechanics, Phys Rev E, 53, 1890-1899 (1996)
[14] Agrawal, O. P., Formulation of Euler-Lagrange equations for fractional variational problems, J Math Anal Appl, 273, 368-379 (2002) · Zbl 1070.49013
[15] Baleanu, D., About fractional quantization and fractional variational principles, Commun Nonlinear Sci Numer Simul, 14, 6, 2520-2523 (2009)
[16] Magin, R. L., Fractional calculus in bioengineering (2006), Begll House Publishers: Begll House Publishers USA
[17] (Hilfer, R., Applications of fractional calculus in physics (2000), World Scientific: World Scientific Singapore) · Zbl 0998.26002
[18] West, B. J.; Bologna, M.; Grigolini, P., Physics of fractal operators (2003), Springer: Springer New York
[19] Lorenz, E. N., Deterministic nonperiodic flow, J Atmos Sci, 20, 130 (1963) · Zbl 1417.37129
[20] Alligood, K. T.; Sauer, T. D.; Yorke, J. A., Chaos: an introduction to dynamical systems (2008), Springer: Springer New York
[21] Laskin, N., Fractional market dynamics, Physica A, 287, 482-492 (2000)
[22] Grigorenko, I.; Grigorenko, E., Chaotic dynamics of the fractional Lorenz system, Phys Rev Lett, 91, 034101 (2003)
[23] Wang, X.; Song, J., Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control, Commun Nonlinear Sci Numer Simul, 14, 8, 3351-3357 (2009) · Zbl 1221.93091
[24] Lü, J. G.; Chen, G., A note on the fractional-order Chen system, Chaos Soliton Fract, 27, 3, 685-688 (2006) · Zbl 1101.37307
[25] Lü, J. G., Chaotic dynamics of the fractional order Lü system and its synchronization, Phys Lett A, 354, 4, 305-311 (2006)
[26] Li, C.; Chen, G., Chaos and hyperchaos in the fractional order Rossler equations, Phys A: Stat Mech Appl, 341, 55-61 (2004)
[27] Fridman, E.; Fridman, L.; Shustin, E., Steady modes in relay control systems with time delay and periodic disturbances, J Dyn Sys Meas Control, 122, 732-737 (2000)
[28] Davis, L. C., Modification of the optimal velocity traffic model to include delay due to driver reaction time, Physica A, 319, 557-567 (2002) · Zbl 1008.90007
[29] Kuang, Y., Delay differential equations with applications in population biology (1993), Academic Press: Academic Press Boston · Zbl 0777.34002
[30] Epstein, I.; Luo, Y., Differential delay equations in chemical kinetics. Nonlinear models: the cross-shaped phase diagram and the Oregonator, J Chem Phys, 95, 244-254 (1991)
[31] Baleanu, D.; Maraaba, T.; Jarad, F., Fractional variational principles with delay, J Phys A, 41, 31 (2008), [article number: 315403] · Zbl 1141.49321
[32] Maraaba, T.; Baleanu, D.; Jarad, F., Existence and uniqueness theorem for a class of delay differential equations with left and right Caputo fractional derivatives, J Math Phys, 49, 8 (2008), [article number: 083507] · Zbl 1152.81550
[33] Maraaba, T.; Jarad, F.; Baleanu, D., On the existence and the uniqueness theorem for fractional differential equations with bounded delay within Caputo derivatives, Sci China Ser A, 51, 10, 1775-1786 (2008) · Zbl 1179.26024
[34] Hale, J. K.; Lunel, S. M.V., Introduction to functional differential equations, Applied mathematical sciences, vol. 99 (1993), Springer: Springer Berlin · Zbl 0787.34002
[35] Wang, X.; Wang, M., Dynamic analysis of the fractional-order Liu system and its synchronization, Chaos, 17, 033106 (2007) · Zbl 1163.37382
[36] Luchko, Y.; Gorenflo, R., An operational method for solving fractional differential equations with the Caputo derivatives, Acta Math Vietnamica, 24, 207-233 (1999) · Zbl 0931.44003
[37] Podlubny, I., Fractional differential equations (1999), Academic Press: Academic Press San Diego · Zbl 0918.34010
[38] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional integrals and derivatives: theory and applications (1993), Gordon & Breach: Gordon & Breach Yverdon · Zbl 0818.26003
[39] Diethelm, K.; Ford, N. J.; Freed, A. D., A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam, 29, 3-22 (2002) · Zbl 1009.65049
[40] Diethelm, K., An algorithm for the numerical solution of differential equations of fractional order, Elec Trans Numer Anal, 5, 1-6 (1997) · Zbl 0890.65071
[41] Diethelm, K.; Ford, N. J., Analysis of fractional differential equations, J Math Anal Appl, 265, 229-248 (2002) · Zbl 1014.34003
[42] Tavazoei, M. S.; Haeri, M., Regular oscillations or chaos in a fractional order system with any effective dimension, Nonlinear Dynam, 54, 3, 213-222 (2008) · Zbl 1187.70043
[43] Matignon D. Stability results for fractional differential equations with applications to control processing. In: Computational engineering in systems and application multiconference, vol. 2, IMACS, IEEE-SMC Proceedings, Lille, France, July 1996. p. 963-8.; Matignon D. Stability results for fractional differential equations with applications to control processing. In: Computational engineering in systems and application multiconference, vol. 2, IMACS, IEEE-SMC Proceedings, Lille, France, July 1996. p. 963-8.
[44] Tavazoei, M. S.; Haeri, M., Chaotic attractors in incommensurate fractional order systems, Physica D, 237, 2628-2637 (2008) · Zbl 1157.26310
[45] Deng, W.; Li, C.; Lu, J., Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dynam, 48, 409-416 (2007) · Zbl 1185.34115
[46] Liu, C.; Liu, T.; Liu, L.; Liu, K., A new chaotic attractor, Chaos Soliton Fract, 22, 1031-1038 (2004) · Zbl 1060.37027
[47] Tavazoei, M. S.; Haeri, M., A necessary condition for double scroll attractor existence in fractional order systems, Phys Lett A, 367, 102-113 (2007) · Zbl 1209.37037
[48] Chua, L. O.; Komuro, M.; Matsumoto, T., The double-scroll family, IEEE Trans Circuits Syst, 33, 1072-1118 (1986) · Zbl 0634.58015
[49] Silva, C. P., Shil’nikov’s theorem – a tutorial, IEEE Trans Circuits Syst I, 40, 675-682 (1993) · Zbl 0850.93352
[50] Cafagna, D.; Grassi, G., New 3-D-scroll attractors in hyperchaotic Chua’s circuit forming a ring, Int J Bifur Chaos, 13, 10, 2889-2903 (2003) · Zbl 1057.37026
[51] Bhalekar S, Daftardar-Gejji V. Solving fractional order delay differential equations using a predictor-corrector scheme, submitted for publication.; Bhalekar S, Daftardar-Gejji V. Solving fractional order delay differential equations using a predictor-corrector scheme, submitted for publication. · Zbl 1269.34015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.