×

A variant of the Mukai pairing via deformation quantization. (English) Zbl 1262.19005

The present paper focuses on pairings on the Hochschild cohomology ring of smooth complex projective varieties. There are mainly two such pairings in the literature, namely:
– The Shklyarov pairing, introduced in the DG-framework in the preprint [D. Shklyarov, “Hirzebruch-Riemann-Roch theorems for DG-algebras”, arXiv:0710.1937].
– The Mukai pairing, defined by A. Căldăraru and S. Willerton in [New York J. Math. 16, 61–98 (2010; Zbl 1214.14013)] via Serre duality.
Results of N. Markarian [J. Lond. Math. Soc., II. Ser. 79, No. 1, 129–143 (2009; Zbl 1167.14005)] and the author [New York J. Math. 14, 643–717 (2008; Zbl 1158.19002)] imply that the Mukai pairing on a variety \(X\) is given (up to sign) via the Hochschild-Kostant-Rosenberg isomorphism by the formula \(<a, b>=\int_X a \wedge b \wedge \mathrm{Td} (X)\). Later on, it has been proved by the author [Mosc. Math. J. 10, No. 3, 629–645 (2010; Zbl 1208.14013)] that the two aforementioned pairings were the same up to signs.
The aim of the current paper is to obtain directly the expression of the Shklyarov pairing. The method relies on the theory of deformation quantization as developed in [M. Kashiwara and P. Schapira, Deformation quantization modules. Astérisque 345. Paris: Société Mathématique de France (2012; Zbl 1260.32001)] as well as on the index theorem of P. Bressler, R. Nest and B. Tsygan [Adv. Math. 167, No. 1, 1–25 (2002; Zbl 1021.53064); ibid. 167, No. 1, 26–73 (2002; Zbl 1021.53065)]. Using this, the proof reduces to prove that the Euler class of the structural sheaf \(\mathcal{O}_X\) is the Todd class of \(X\). This fact has been conjectured by Kashiwara in 1991 and proved by the reviewer in [J. Differ. Geom. 90, No. 2, 267–275 (2012; Zbl 1247.32013)]. A completely different proof is presented here.

MSC:

19L10 Riemann-Roch theorems, Chern characters
14C40 Riemann-Roch theorems
53D55 Deformation quantization, star products

References:

[1] Bressler P., Nest R., Tsygan B.: A Riemann–Roch formula for the microlocal Euler class. IMRN 20, 1033–1044 (1997) · Zbl 0915.32001 · doi:10.1155/S1073792897000652
[2] Bressler P., Nest R., Tsygan B.: Riemann–Roch theorems via deformation quantization I. Adv. Math. 167(1), 1–25 (2002) · Zbl 1021.53064 · doi:10.1006/aima.2000.1977
[3] Bressler P., Nest R., Tsygan B.: Riemann–Roch theorems via deformation quantization II. Adv. Math. 167(1), 26–73 (2002) · Zbl 1021.53065 · doi:10.1006/aima.2000.1978
[4] Brylinski J.-L.: A differential complex for Poisson manifolds. J. Diff. Geom. 28(1), 93–114 (1988) · Zbl 0634.58029
[5] Caldararu A.: The Mukai pairing I: a categorical approach. N. Y. J. Math. 16, 61–98 (2010) · Zbl 1214.14013
[6] Caldadaru A.: The Mukai pairing II: the Hochschild–Kostant–Rosenberg isomorphism. Adv. Math. 194(1), 34–66 (2005) · Zbl 1098.14011 · doi:10.1016/j.aim.2004.05.012
[7] Engeli M., Felder G.: A Riemann–Roch–Hirzebruch formula for traces of differential operators. Ann. Sci. Éc. Norm. Supér. (4) 41(4), 621–653 (2008) · Zbl 1163.32009
[8] Feigin B., Felder G., Shoikhet B.: Hochschild cohomology of the Weyl algebra and traces in deformation quantization. Duke Math. J. 127(3), 487–517 (2005) · Zbl 1106.53055 · doi:10.1215/S0012-7094-04-12733-2
[9] Grivaux, J.: On a conjecture of Kashiwara relating Chern and Euler classes of O-modules. preprint, arxiv:0910.5384
[10] Grothendieck A.: On the de Rham cohomology of algebraic varieties. Publ. Math. IHES 29, 95–103 (1966) · Zbl 0145.17602
[11] Huybrechts D., Macri E., Stellari P.: Derived equivalences of K3 surfaces and orientation. Duke Math. J. 149(3), 461–507 (2009) · Zbl 1237.18008 · doi:10.1215/00127094-2009-043
[12] Keller B.: On the cyclic homology of ringed spaces and schemes. Doc. Math. 3, 231–259 (1998) · Zbl 0917.19002
[13] Kashiwara, M.: Letter to Pierre Schapira dated 18 Nov 1991
[14] Kashiwara M., Schapira P.: Modules over deformation quantization algebroids: an overview. Lett. Math. Phys. 88(1–3), 79–99 (2009) · Zbl 1196.53054 · doi:10.1007/s11005-009-0297-4
[15] Kashiwara, M., Schapira, P.: Deformation quantization modules. preprint, arxiv: 1003.3304
[16] Lunts, V.: Lefschetz fixed point theorems for algebraic varieties and DG algebras. preprint, arxiv:1102.2884
[17] Macri E., Stellari P.: Infinitesinal derived Torelli theorem for K3 surfaces. With an appendix by Sukhendu Mehrotra. IMRN 2009(17), 3190–3220 (2009) · Zbl 1174.14018
[18] Markarian, N.: Poincare–Birkhoff–Witt isomorphism, Hochschild homology and Riemann–Roch theorem. Max Planck Institute MPI 2001-52 (2001)
[19] Markarian N.: The Atiyah class, Hochschild cohomology and the Riemann–Roch theorem. J. Lond. Math. Soc. 79(1), 129–143 (2009) · Zbl 1167.14005 · doi:10.1112/jlms/jdn064
[20] Pflaum M., Posthuma H., Tang X.: Cyclic cocycles in deformation quantization and higher index theorems. Adv. Math. 223(6), 1958–2021 (2010) · Zbl 1190.53087 · doi:10.1016/j.aim.2009.10.012
[21] Ramadoss A.: The relative Riemann–Roch theorem from Hochschild homology. N. Y. J. Math. 14, 643–717 (2008) · Zbl 1158.19002
[22] Ramadoss A.: Some notes on the Feigin–Losev–Shoikhet integral conjecture. J. Noncommut. Geom. 2, 405–448 (2008) · Zbl 1194.32010 · doi:10.4171/JNCG/25
[23] Ramadoss A.: The Mukai pairing and integral transforms in Hochschild homology. Mosc. Math. J. 10(3), 629–645 (2010) · Zbl 1208.14013
[24] Ramadoss A.: A generalized Hirzebruch Riemann–Roch theorem. C. R. Math. Acad. Sci. Paris 347(5–6), 289–292 (2009) · Zbl 1158.14014 · doi:10.1016/j.crma.2009.01.015
[25] Ramadoss A.: The big Chern classes and the Chern character. Int. J. Math. 19(6), 699–746 (2008) · Zbl 1165.13011 · doi:10.1142/S0129167X08004856
[26] Schapira P., Schneiders J.-P.: Elliptic pairs I. Relative finiteness and duality. Index theorem for elliptic pairs. Astérisque 224, 5–60 (1994) · Zbl 0856.58038
[27] Shklyarov, D.: Hirzebruch Riemann–Roch theorem for DG-algebras. preprint, arxiv: 0710.1937
[28] Willwacher, T.: Cyclic Cohomology of the Weyl algebra. preprint, Arxiv:0804.2812
[29] Töen B.: The homotopy theory of dg-categories and derived Morita theory. Invent. Math. 167(3), 615–667 (2007) · Zbl 1118.18010 · doi:10.1007/s00222-006-0025-y
[30] Thomason, R.W., Trobaugh, T.: Higher algebraic K-theory of schemes and of derived categories. The Grothendieck Festschrift, vol. III, 247–435, Progr. Math., vol. 88. Birkhauser, Boston (1990) · Zbl 0731.14001
[31] Tsygan, B.: Cyclic homology. Cyclic Homology in Non-Commutative Geometry, 73–113. In: Encyclopaedia Math. Sci. vol. 121. Springer, Berlin (2004) · Zbl 1045.46043
[32] Yao D.: Higher algebraic K-theory of admissible abelian categories and localization theorems. J. Pure Appl. Algebra 77(3), 263–339 (1992) · Zbl 0746.19006 · doi:10.1016/0022-4049(92)90142-3
[33] Yekutieli A.: The continuous Hochschild cochain complex of a scheme. Can. J. Math. 54(6), 1319–1337 (2002) · Zbl 1047.16004 · doi:10.4153/CJM-2002-051-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.