×

Contact relative differential invariants for non generic parabolic Monge-Ampère equations. (English) Zbl 1154.35004

In the present paper the classical problem of contact classification of Monge-Ampère equations is studied. This problem has a long history, starting with S. Lie, G. Darboux and E. Goursat, see the recent monograph [A. Kushner, V. Lychagin and V. Rubtsov, Contact geometry and nonlinear differential equations. Encyclopedia of Mathematics and Its Applications 101, Cambridge University Press (2007; Zbl 1122.53044)]. This paper is devoted to classification of parabolic equations. The authors characterize in terms of relative invariants when a parabolic Monge-Ampère equation can be brought to one of the forms \(z_{yy}=F(x,y,z,z_x,z_y)\) or \(z_{yy}-2zz_{xy}+z^2z_{xx}=G(x,y,z,z_x,z_y)\).

MSC:

35A30 Geometric theory, characteristics, transformations in context of PDEs
35K55 Nonlinear parabolic equations
53A55 Differential invariants (local theory), geometric objects
58A20 Jets in global analysis
53D10 Contact manifolds (general theory)

Citations:

Zbl 1122.53044
Full Text: DOI

References:

[1] Alonso-Blanco R.J., Manno G., Pugliese F.: Normal forms for parabolic Monge-Ampère equations. http://arxiv.org/PS_cache/arxiv/pdf/0707/0707.0683v3.pdf · Zbl 1154.35004
[2] Bocharov, A.V., et al.: Symmetries and Conservation Laws for Differential Equations of Mathematical Physics. AMS, Providence (1999)
[3] Bryant, R.L., Griffiths, P.A.: Characteristic cohomology of differential systems (II): Conservation laws for a class of parabolic equations. Duke Math. J. 78(3), 531–676 (1995) · Zbl 0853.58005 · doi:10.1215/S0012-7094-95-07824-7
[4] Cartan, É.: Les systèmes de Pfaff à cinq variables et les équations aux dérivées partielles du second ordre. Ann. Sci. École Norm. 27(3), 109–192 (1910) · JFM 41.0417.01
[5] Goursat, E.: Leçons sur l’integration des Equations aux Derivées Partielles du Second Ordre, vol. I. Gauthier-Villars, Paris (1890)
[6] Ibragimov, N.H.: Lie Group Analysis: Classical Heritage. ALGA Publications, Karlskrona (2004) · Zbl 1307.35008
[7] Kruglikov, B.: Classification of Monge-Ampère equations with two variables. In: Geometry and Topology of Caustics, vol. 50, pp. 179–194. CAUSTICS’98 (Warsaw). Banach Center Publ. (1999) · Zbl 0953.35011
[8] Kushner, A.: Classification of mixed type Monge-Ampère equations. In: Geometry in Partial Differential Equations, pp. 173–188. World Sci., Singapore (1994) · Zbl 0887.35105
[9] Kushner, A., Lychagin, V., Rubtsov, V.: Contact Geometry and Non Linear Differential Equations. Cambridge University Press, Cambridge (2007) · Zbl 1122.53044
[10] Lychagin, V.V.: Contact geometry and second-order nonlinear differential equations. Russ. Math. Surveys 34(1), 149–180 (1979) · Zbl 0427.58002 · doi:10.1070/RM1979v034n01ABEH002873
[11] Lychagin, V., Rubtsov, V.: The theorems of Sophus Lie for the Monge-Ampère equations. Dokl. Akad. Nauk BSSR 27(5), 396–398 (1983) · Zbl 0526.58002
[12] Vinogradov, A.M., Marvan, M., Yumaguzhin, V.A.: Differential invariants of generic hyperbolic Monge-Ampère equations. Cent. Eur. J. Math. 5(1), 105–133 (2007) · Zbl 1129.58015 · doi:10.2478/s11533-006-0043-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.