×

Dispersal and competition models for plants. (English) Zbl 0842.92026

Summary: New models for seed dispersal and competition between plant species are formulated and analyzed. The models are integrodifference equations, discrete in time and continuous in space, and have applications to annual and perennial species. The spread or invasion of a single plant species into a geographic region is investigated by studying the travelling wave solutions of these equations. Travelling wave solutions are shown to exist in the single-species models and are compared numerically. The asymptotic wave speed is calculated for various parameter values. The single-species integrodifference equations are extended to a model for two competing annual plants. Competition in the two-species model is based on a difference equation model developed by A. G. Pakes and R. A. Maller [Mathematical ecology of plant species competition: A class of deterministic models for binary mixtures of plant genotypes. (1990; Zbl 0726.92027)]. The two-species model with competition and dispersal yields a system of integrodifference equations. The effects of competition on the travelling wave solutions of invading plant species are investigated numerically.

MSC:

92D40 Ecology
39A99 Difference equations
39B99 Functional equations and inequalities
45M99 Qualitative behavior of solutions to integral equations

Citations:

Zbl 0726.92027
Full Text: DOI

References:

[1] Adee, S. R., Wender, W. F., Hartnett, D. C.: Competition between Pyrenophora triticirepentis and Septoria nodorum in the wheat leaf as measured with de Wit replacement series. Phytopathology 80, 1177-1182 (1990) · doi:10.1094/Phyto-80-1177
[2] Allen, L. J. S., Allen, E. J., Kunst, C. R. G.: A diffusion model for dispersal of Opuntia imbricata (cholla) on rangeland. J. of Ecol. 79, 1123-1135 (1991) · doi:10.2307/2261103
[3] Andersen, M.: Properties of some density-dependent integrodifference equation population models. Math. Biosci. 104, 135-157 (1991) · Zbl 0726.92026 · doi:10.1016/0025-5564(91)90034-G
[4] Andow, D. A., Kareiva, P. M., Levin, S. A., Okubo, A.: Spread of invading organisms. Landscape Ecology 4, 177-188 (1990) · doi:10.1007/BF00132860
[5] Bannister, P.: Introduction to Physiological Plant Ecology. New York: John Wiley & Sons 1978
[6] Begon, M., Mortimer, M.: Population Ecology. Second Ed., Massachusetts: Sinauer Associates 1986
[7] de Wit, C. T., van den Bergh, J. P.: Competition between herbage plants. Neth. J. Agric. Sci. 13, 212-221 (1965)
[8] Fisher, R. A.: The wave of advance of advantages genes. Ann. Eugen. London. 7, 355-369 (1937) · JFM 63.1111.04
[9] Hardin, D. P., Táka?, P., Webb, G. F.: Dispersion population models discrete in time and continuous in space. J. Math. Biol. 28, 1-20 (1990) · Zbl 0732.92022 · doi:10.1007/BF00171515
[10] Klinkhamer, P. G. L., de Jong, T. J., Metz, J. A. J., Val, J.: Life history tactics of annual organisms: The joint effects of dispersal and delayed germination. Theor. Popul. Biol. 32, 127-156 (1987) · Zbl 0614.92017 · doi:10.1016/0040-5809(87)90044-X
[11] Kot, M.: Discrete-time travelling waves: ecological examples. J. Math. Biol. 30, 413-436 (1992) · Zbl 0825.92126 · doi:10.1007/BF00173295
[12] Kot, M., Schaffer, W. M.: Discrete-time growth-dispersal models. Math. Biosci. 80, 109-136 (1986) · Zbl 0595.92011 · doi:10.1016/0025-5564(86)90069-6
[13] Lacey, J. R., Olson., B. E.: Environmental and economic impacts of noxious range weeds. In: Noxious Range Weeds (James, L. F., Evans, J. O., Ralphs, M. H., Child, R. D., Eds.) 5-16, Boulder, Co.: Westview Press 1991
[14] Levin, S. A., Cohen, D., Hastings, A.: Dispersal strategies in patchy environments. Theor. Popul. Biol. 26, 165-191 (1984) · Zbl 0541.92022 · doi:10.1016/0040-5809(84)90028-5
[15] Lui, R.: A nonlinear integral operator arising from a model in population genetics, I. Monotone initial data, SIAM J. Math. Anal. 13, 913-937 (1982) · Zbl 0508.45006 · doi:10.1137/0513064
[16] Lui, R.: A nonlinear integral operator arising from a model in population genetics, II. Initial data with compact support. SIAM J. Math. Anal. 13, 938-953 (1982) · Zbl 0508.45007 · doi:10.1137/0513065
[17] Lui, R.: Biological growth and spread modeled by systems of recursions. I. Mathematical theory, Math. Biosci. 93, 269-295 (1989) · Zbl 0706.92014 · doi:10.1016/0025-5564(89)90026-6
[18] Lui, R.: Biological growth and spread modeled by systems of recursions. II. Biological theory, Math. Biosci. 93, 297-312 (1989) · Zbl 0706.92015 · doi:10.1016/0025-5564(89)90027-8
[19] MacDonald, N.: Models of an annual plant population with a seedbank. J. Theor. Biol. 93, 643-653 (1981) · doi:10.1016/0022-5193(81)90226-5
[20] Mollison, D.: Spatial contact models for ecological and epidemic spread. J. R. Statist. Soc. B 39, 283-326 (1977) · Zbl 0374.60110
[21] Murray, J. D.: Mathematical Biology. Berlin, Heidelberg, New York: Springer-Verlag 1989 · Zbl 0682.92001
[22] Okubo, A.: Diffusion and Ecological Problems: Mathematical Models. Berlin, Heidelberg, New York: Springer-Verlag 1980 · Zbl 0422.92025
[23] Okubo, A., Maim, P. K., Williamson, M. H., Murray, J. D.: On the spatial spread of the grey squirrel in Britain. Proc. Roy. Soc. Lond. B 238, 113-125 (1989) · doi:10.1098/rspb.1989.0070
[24] Pacala, S. W.: Neighborhood models of plant population dynamics. 2. Multi-species models of annuals. Theor. Popul. Biol. 29, 262-292 (1986a) · doi:10.1016/0040-5809(86)90011-0
[25] Pacala, S. W.: Neighborhood models of plant population dynamics. 4. Single-species and multispecies models of annuals with dormant seeds. Am. Natur. 128, 859-878 (1986b) · doi:10.1086/284610
[26] Pakes, A. G., Maller, R. A.: Mathematical Ecology of Plant Species Competition: A Class of Deterministic Models for Binary Mixtures of Plant Genotypes. Cambridge, New York: Cambridge University Press 1990 · Zbl 0726.92027
[27] Ritland, K.: The joint evolution of seed dormancy and flowering time in annual plants living in variable environments. Theor. Popul. Biol. 24, 213-243 (1983) · Zbl 0523.92024 · doi:10.1016/0040-5809(83)90026-6
[28] Rossiter, R. C., Maller, R. A., Pakes, A. G.: A model of changes in the composition of binary mixtures of subterranean clover strains. Aust. J. Agric. Res. 36, 119-143 (1985) · doi:10.1071/AR9850119
[29] Schoener, T. W.: Alternatives to Lotka-Volterra competition: models of intermediate complexity. Theor. Popul. Biol. 10, 309-333 (1976) · Zbl 0352.92016 · doi:10.1016/0040-5809(76)90022-8
[30] Skellam, J. G.: Random dispersal in theoretical populations. Biometrika 38, 196-218 (1951) · Zbl 0043.14401
[31] Templeton, A. R., Levin, D. A.: Evolutionary consequences of seed pools. Am. Natur. 114, 232-249 (1979) · doi:10.1086/283471
[32] Turkington, R., Aarssen, L. W.: Local-scale differentiation as a result of competitive interactions. In: Perspectives on Plant Population Ecology. (Dirzo, R., Sarukhan, J., Eds.), 107-127, Massachusetts: Sinauer Assoc., Inc. 1984
[33] Venable, D. L., Brown, J. S.: The selective interactions of dispersal, dormancy, and seed size as adaptations for reducing risk in variable environments. Am. Natur. 131, 360-384 (1988) · doi:10.1086/284795
[34] Weinberger, H. F.: Long-time behavior of a class of biological models. SIAM J. Math. Anal. 13, 353-396 (1982) · Zbl 0529.92010 · doi:10.1137/0513028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.