×

Complete precones on noncommutative integral domains. (English) Zbl 1031.12006

It is known that every preordering of a field is an intersection of all orderings containing it. This fact is regarded by the author as the Intersection Theorem. Many authors proved it in a more general setting: preorderings of 2-power exponent [E. Becker, Hereditary-Pythagorean fields and orderings of higher level, Inst. Mat. Pura Apl., Rio de Janeiro (1978; Zbl 0509.12020)], preorderings of arbitrary even exponent [E. Becker, J. Reine Angew. Math. 307/308, 8-30 (1979; Zbl 0398.12012)], skew fields and preorderings of arbitrary even exponent [V. Powers, J. Algebra 136, 51-59 (1991; Zbl 0715.12002)], and Noetherian rings [the author, Commun. Algebra 27, 5083-5096 (1999; Zbl 0939.16025)].
In the present paper the author steers towards proving a completely general version of the Intersection Theorem, that is, for divisible precones of any exponent on any integral domain. He follows the strategy applied in the special setting mentioned above generalizing some results of Becker. However, to achieve the final aim he needs one more fact, which is formulated as a conjecture: every complete precone on an integral domain is a fan.
In the paper this conjecture is verified in the following two cases: complete precones of 2-power exponent and complete precones on Ore domains. Thus in these cases the author obtains the Intersection Theorem.
In the final section the reader finds the description of all cones on the ring of quantum polynomials.

MSC:

12J15 Ordered fields
16U10 Integral domains (associative rings and algebras)
16U20 Ore rings, multiplicative sets, Ore localization
Full Text: DOI

References:

[1] DOI: 10.1007/BF02952512 · JFM 52.0120.05 · doi:10.1007/BF02952512
[2] Becker E., lnst. Mat. PuraApl., Rio de Janeiro (1978)
[3] DOI: 10.1515/crll.1979.307-308.8 · Zbl 0398.12012 · doi:10.1515/crll.1979.307-308.8
[4] DOI: 10.1080/00927877908822439 · Zbl 0432.12011 · doi:10.1080/00927877908822439
[5] Becker E., in Real algebraic geometry and quadratic forms (Rennes, 1981) pp 139– (1982)
[6] Becker E., J. Reine Angew. Math. 330 pp 53– (1982)
[7] DOI: 10.1007/BF01192806 · Zbl 0514.12023 · doi:10.1007/BF01192806
[8] Cimprič J., On homomomorphisms from semigroups onto cyclic groups
[9] Cimprič J., Preorderings on semigroups and semirings of right quotients · Zbl 0989.20046
[10] Cimprič J., Orderings of higher level on a class of semirings
[11] Cimprič J., Orderings of higher level on Noetherian rings
[12] Cohn P.M., Skew fields, theory of general division rings (1995) · Zbl 0840.16001 · doi:10.1017/CBO9781139087193
[13] DOI: 10.1016/0021-8693(82)90278-2 · Zbl 0493.10026 · doi:10.1016/0021-8693(82)90278-2
[14] DOI: 10.1090/S0002-9939-1952-0047018-9 · doi:10.1090/S0002-9939-1952-0047018-9
[15] DOI: 10.1007/BF02573482 · Zbl 0807.16040 · doi:10.1007/BF02573482
[16] Lam T. Y., A first course in noncommutative rings (1991) · Zbl 0728.16001
[17] DOI: 10.1007/BF01571659 · Zbl 0015.38801 · doi:10.1007/BF01571659
[18] Marshall M. Zhang Y.Orderings, real places and valuations on noncommutative integral domains115 preprint · Zbl 0934.16041
[19] DOI: 10.1016/0021-8693(91)90063-E · Zbl 0715.12002 · doi:10.1016/0021-8693(91)90063-E
[20] DOI: 10.1016/0022-4049(90)90049-N · Zbl 0721.16026 · doi:10.1016/0022-4049(90)90049-N
[21] DOI: 10.1007/BF01162872 · Zbl 0627.10014 · doi:10.1007/BF01162872
[22] DOI: 10.1090/S0002-9939-1952-0047017-7 · doi:10.1090/S0002-9939-1952-0047017-7
[23] Vinogradov A. A., Sci. Proc. Ivanovo Pedagogical Inst. 4 pp 19– (1953)
[24] Walter L., Orders and signatures of higher level 0n Commutative rings (1994)
[25] Zhang Y., Orderings on noncommutative rings (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.