×

Yoneda structures from 2-toposes. (English) Zbl 1125.18001

While higher category theory was developed with an eye on algebraic topology, it was soon seen as applicable to computer science and was more recently led to naturally in the field theory of physics. The techniques used to define and study higher categories were largely 1-categorical. The present paper gathers 2-categorical techniques to carry that study further. The compelling justification for this, explained in the Introduction, is that higher categories (notably those which are trivial in some low dimensions) tend to be algebras for 2-monads that are not mere liftings of monads on categories.
After elegantly reviewing limits, fibrations, extensions and limits in a 2-category, the paper exposes the theory of weighted colimits for a Yoneda structure on a 2-category in the sense of R. Walters and the reviewer [J. Algebra 50, 350–379 (1978; Zbl 0401.18004)] with a couple of extra axioms. The author defines a 2-topos to be a finitely complete, cartesian closed 2-category with a duality involution and what he calls a classifying discrete opfibration into an object denoted by \(\Omega \). Examples relevant to M. A. Batanin’s globular approach to higher categories [Adv. Math. 136, No. 1, 39–103 (1998; Zbl 0912.18006)] are explained. Each 2-topos supports a Yoneda structure for which special features are explored.

MSC:

18A05 Definitions and generalizations in theory of categories
18A15 Foundations, relations to logic and deductive systems
18B25 Topoi
18D05 Double categories, \(2\)-categories, bicategories and generalizations (MSC2010)
Full Text: DOI

References:

[1] Baez, J., Crans, A.: Higher-dimensional algebra VI: Lie 2-algebras. Theory Appl. Categ. 12, 492–528 (2004) · Zbl 1057.17011
[2] Baez, J., Dolan, J.: Higher-dimensional algebra and topological quantum field theory. J. Math. Phys. 36, 6073–6105 (1995) · Zbl 0863.18004 · doi:10.1063/1.531236
[3] Baez, J., Dolan, J.: Higher-dimensional algebra III: n-categories and the algebra of opetopes. Adv. Math. 135, 145–206 (1998) · Zbl 0909.18006 · doi:10.1006/aima.1997.1695
[4] Baez, J., Lauda, A.: Higher-dimensional algebra V: 2-groups. Theory Appl. Categ. 12, 423–491 (2004) · Zbl 1056.18002
[5] Baez, J., Schreiber, U.: Higher gauge theory. arXiv:math.DG/0511710 (2005)
[6] Batanin, M.: Computads for finitary monads on globular sets. Contemp. Math. 230, 37–57 (1998) · Zbl 0932.18004
[7] Batanin, M.: Monoidal globular categories as a natural environment for the theory of weak n-categories. Adv. Math. 136, 39–103 (1998) · Zbl 0912.18006 · doi:10.1006/aima.1998.1724
[8] Batanin, M.: The Eckmann–Hilton argument, higher operads and E n -spaces. arXiv:math.CT/0207281 (2002)
[9] Batanin, M.: The combinatorics of iterated loop spaces. arXiv:math.CT/0301221 (2003)
[10] Bénabou, J.: Fibred categories and the foundation of naive category theory. J. Symbolic Logic 50, 10–37 (1985) · Zbl 0564.18001 · doi:10.2307/2273784
[11] Bourn, D.: Sur les ditopos. C. R. Acad. Sci. Paris 279, 911–913 (1974) · Zbl 0293.18009
[12] Carboni, A., Johnstone, P.T.: Connected limits, familial representability and Artin glueing. Math. Structures Comput. Sci. 5, 441–459 (1995) · Zbl 0849.18002 · doi:10.1017/S0960129500001183
[13] Ehresmann, C.: Gattungen von lokalen strukturen. Jber. Deutsch. Math. Verein 60, 49–77 (1958) · Zbl 0097.37803
[14] Freyd, P., Street, R.: On the size of categories. Theory Appl. Categ. 1, 174–181 (1995) · Zbl 0854.18003
[15] Gray, J.W.: Fibred and cofibred categories. In: Proceedings Conference on Categorical Algebra at La Jolla, pp. 21–83. Springer, Berlin (1966) · Zbl 0192.10701
[16] Grothendieck, A.: Catégories fibrées et descente. Lecture Notes in Math. 224, 145–194 (1970)
[17] Hermida, C.: Some properties of fib as a fibred 2-category. JPAA 134(1), 83–109 (1999) · Zbl 0935.18007
[18] Johnstone, P.T.: Sketches of an elephant: a topos theory compendium. In: Oxford Logic Guides, vol. 1. Oxford Science, Oxford, UK (2002) · Zbl 1071.18002
[19] Kelly, G.M.: Basic concepts of enriched category theory. In: LMS Lecture Note Series, vol. 64. Cambridge University Press, Cambridge (1982) · Zbl 0478.18005
[20] Kelly, G.M., Street, R.: Review of the elements of 2-categories. Lecture Notes in Math. 420, 75–103 (1974) · Zbl 0334.18016 · doi:10.1007/BFb0063101
[21] Lawvere, F.W.: Equality in hyperdoctrines and comprehension schema as an adjoint functor. In: Proceedings of the American Mathematical Society Symposium on Pure Mathematics, vol. XVII, pp. 1–14 (1970) · Zbl 0234.18002
[22] Mac Lane, S., Moerdijk, I.: Sheaves in Geometry and Logic. Springer, Berlin (1991) · Zbl 0822.18001
[23] Penon, J.: Sous-catégories classifiée. C. R. Acad. Sci. Paris 278, 475–477 (1974) · Zbl 0289.18009
[24] Street, R.: Elementary cosmoi. Lecture Notes in Math. 420, 134–180 (1974) · Zbl 0325.18005 · doi:10.1007/BFb0063103
[25] Street, R.: Fibrations and Yoneda’s lemma in a 2-category. Lecture Notes in Math. 420, 104–133 (1974) · Zbl 0327.18006 · doi:10.1007/BFb0063102
[26] Street, R.: Limits indexed by category-valued 2-functors. J. Pure Appl. Algebra 8, 149–181 (1976) · Zbl 0335.18005 · doi:10.1016/0022-4049(76)90013-X
[27] Street, R.: Cosmoi of internal categories. Trans. Amer. Math. Soc. 258, 271–318 (1980) · Zbl 0393.18009 · doi:10.1090/S0002-9947-1980-0558176-3
[28] Street, R.: Fibrations in bicategories. Cahiers Topologie. Géom. Differentielle Catégo. 21, 111–160 (1980)
[29] Street, R.: The petit topos of globular sets. J. Pure Appl. Algebra 154, 299–315 (2000) · Zbl 0963.18005 · doi:10.1016/S0022-4049(99)00183-8
[30] Street, R., Walters, R.F.C.: Yoneda structures on 2-categories. J. Algebra 50, 350–379 (1978) · Zbl 0401.18004 · doi:10.1016/0021-8693(78)90160-6
[31] Weber, M.: Operads within monoidal pseudo algebra II (in preperation)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.