×

A survey of totality for enriched and ordinary categories. (English) Zbl 0593.18007

Many categories of interest in mathematics are not cocomplete at all (for example, the homotopy category and the category of fields). A category A is cocomplete when every functor \(f: K\to A\), with K small, has a colimit. The categories in nature which are cocomplete generally satisfy a stronger cocompleteness property: they are total. This means that every functor \(f: K\to A\), whose associated discrete fibration has small fibres, has a colimit.
Equivalently, A is total when its Yoneda embedding \(y: A\to PA\) into the category PA of presheaves on A has a left adjoint z. This concept goes back to R. Walters and the reviewer [J. Algebra 50, 350-379 (1978; Zbl 0401.18004)] in a setting which includes not only categories, but ordered sets, enriched categories, finitely complete categories, and so on. Later papers by various authors have mainly examined totality for ordinary categories and finitely complete categories (the latter because of its connection with Grothendieck toposes).
The present paper looks in detail at totality for categories enriched over a good base monoidal category V. It brings together the known results at this level, and, lifts and extends results previously known only for ordinary categories (especially concerning compactness and hypercompleteness). Furthermore, the relationship between totality of an enriched category and totality of its underlying ordinary category is examined.
Reviewer: R.Street

MSC:

18D20 Enriched categories (over closed or monoidal categories)

Citations:

Zbl 0401.18004

References:

[1] 1 J. Adamek , Colimits of algebras revisited , Bull. Austral. Math. Soc. 17 ( 1977 ), 433 - 450 . MR 470020 | Zbl 0365.18007 · Zbl 0365.18007 · doi:10.1017/S0004972700010704
[2] 2 R. Borger , W. Tholen , M.B. Wischnewsky & H. Wolff , Compact and hypercomplete categories , J. Pure Appl. Algebra 2 ( 1981 ), 129 - 144 . MR 614376 | Zbl 0457.18003 · Zbl 0457.18003 · doi:10.1016/0022-4049(81)90002-5
[3] 3 B.J. Day , On adjoint-functor factorization , Lecture Notes in Math . 420 ( 1974 ), 1 - 19 . MR 396717 | Zbl 0367.18004 · Zbl 0367.18004
[4] 4 B.J. Day & R. Street , Categories in which all strong generators are dense , J. Pure Appl. Algebra (to appear). MR 868984 | Zbl 0612.18004 · Zbl 0612.18004 · doi:10.1016/0022-4049(86)90065-4
[5] 5 E.J. Dubuc , Adjoint triangles , Lecture Notes in Math . 61 ( 1968 ), 69 - 91 . MR 233864 | Zbl 0172.02103 · Zbl 0172.02103
[6] 6 E.J. Dubuc , Kan extensions in Enriched Category Theory , Lecture Notes in Math. 145 ( 1970 ). MR 280560 | Zbl 0228.18002 · Zbl 0228.18002
[7] 7 P.J. Freyd & G.M. Kelly , Categories of continuous functors I , J. Pure Appl. Algebra 2 ( 1972 ), 169 - 191 ; erratum ibid. 4 ( 1974 ), 121 . MR 322004 | Zbl 0257.18005 · Zbl 0257.18005 · doi:10.1016/0022-4049(72)90001-1
[8] 8 P. Gabriel & F. Ulmer , Lokal prasentierbare Kategorien , Lecture Notes in Math . 221 ( 1971 ). MR 327863 | Zbl 0225.18004 · Zbl 0225.18004 · doi:10.1007/BFb0059396
[9] 9 S.A. Huq , An interpolation theorem for adjoint functors , Proc. A.M.S. 25 ( 1970 ), 880 - 883 . MR 260824 | Zbl 0204.33601 · Zbl 0204.33601 · doi:10.2307/2036771
[10] 10 G.B. Im & G.M. Kelly , Some remarks on conservative functors with left adjoints , J. Korean Math. Soc. (to appear). MR 843247 | Zbl 0602.18003 · Zbl 0602.18003
[11] 11 J.R. Isbell , Small subcategories and completeness , Math. Systems Theory 2 ( 1968 ), 27 - 50 . MR 224670 | Zbl 0155.03504 · Zbl 0155.03504 · doi:10.1007/BF01691344
[12] 12 G.M. Kelly , Basic concepts of enriched category theory , London Math. Soc. Lecture Notes Series 64 , Cambridge Univ. Press , 1982 . MR 651714 | Zbl 0478.18005 · Zbl 0478.18005
[13] 13 G.M. Kelly , Structures defined by finite limits in the enriched context, I , Cahiers Top. et Géom. Diff. XXIII - 1 ( 1982 ), 3 - 42 . Numdam | MR 648793 | Zbl 0538.18006 · Zbl 0538.18006
[14] 14 S. Mac Lane , Categories for the working mathematician , Graduate Texts in Math. 5 , Springer , 1971 . MR 1712872 | Zbl 0232.18001 · Zbl 0232.18001
[15] 15 B.A. Rattray , Adjoints to functors from categories of algebras , Comm. in Algebra 3 ( 1975 ), 563 - 569 . MR 376804 | Zbl 0316.18004 · Zbl 0316.18004 · doi:10.1080/00927877508822061
[16] 16 H. Schubert , Categories , Springer , 1972 . MR 349793 | Zbl 0253.18002 · Zbl 0253.18002
[17] 17 R. Street , Notions of topos , Bull. Austral. Math. Soc. 23 ( 1981 ), 199 - 208 . MR 617062 | Zbl 0471.18005 · Zbl 0471.18005 · doi:10.1017/S000497270000705X
[18] 18 R. Street , The family approach to total cocompleteness and toposes , Trans. A.M.S. 284 ( 1984 ), 355 - 369 . MR 742429 | Zbl 0512.18001 · Zbl 0512.18001 · doi:10.2307/1999291
[19] 19 R. Street & R. Walters , Yoneda structures on 2-categories , J. Algebra 50 ( 1978 ), 350 - 379 . MR 463261 | Zbl 0401.18004 · Zbl 0401.18004 · doi:10.1016/0021-8693(78)90160-6
[20] 20 W. Tholen , Adjungierte Dreiecke, Colimites und Kan-Erweiterungen, Math . Annalen 217 ( 1975 ), 121 - 129 . MR 393172 | Zbl 0325.18002 · Zbl 0325.18002 · doi:10.1007/BF01351290
[21] 21 W. Tholen , Semi-topological functors I , J. Pure Appl. Algebra 15 ( 1979 ), 53 - 73 . Zbl 0413.18001 · Zbl 0413.18001 · doi:10.1016/0022-4049(79)90040-9
[22] 22 W. Tholen , Note on total categories , Bull. Austral. Math. Soc. 21 ( 1980 ), 169 - 173 . MR 574836 | Zbl 0431.18002 · Zbl 0431.18002 · doi:10.1017/S0004972700005992
[23] 23 R.F.C. Walters , Total cocompleteness , abstract in Proceedings of the Isle of Thorns Category Meeting 1976 .
[24] 24 R.J. Wood , Some remarks on total categories , J. Algebra 75 ( 1982 ), 538 - 545 . MR 653907 | Zbl 0504.18001 · Zbl 0504.18001 · doi:10.1016/0021-8693(82)90055-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.