×

Univalent functions in Hardy, Bergman, Bloch and related spaces. (English) Zbl 1158.30026

Let \(\mathcal{U}\) be the class of all univalent functions in the unit disc \(\mathbb D\). If \(X\) is a space of analytic functions in the unit disc \(\mathbb D\) then an interesting problem consists in describing geometrically those \(f\in\mathcal{U}\cap X\). There is a good chance in terms of the maximum modulus \(M_\infty(r,f)\) or in terms of the length of the image of \(\{z\in\mathbb D: |z|=r\}\) by \(f\), that is, \(2\pi r M_1(r,f')\). Indeed, earlier results of G. H. Hardy and J. E. Littlewood [Math. Z. 34, 403–439 (1931; Zbl 0003.15601; JFM 57.0476.01)], H. Prawitz [Arkiv Mat. 20, A, Nr. 6, 12 S (1927; JFM 53.0307.02)] and C. Pommerenke [Math. Math. Ann. 145, 285–296 (1962; Zbl 0117.04302)] prove that if \(f\in\mathcal{U}\) then \[ \begin{split} \int_0^1 M_\infty^p(r,f)\,dr<\infty &\qquad\Leftrightarrow\qquad f\in H^p,\qquad 0<p<\infty, \\ \int_0^1 M_1^p(r,f')\,dr<\infty &\qquad\Leftrightarrow\qquad f\in H^p,\qquad 0<p<2. \end{split} \]
In this paper the authors obtain a good number of results of this type, one of them asserts that if \(f\in\mathcal{U}\), \(2\leq p<\infty\), and \(\alpha>-2\) then the following conditions are equivalent
(1)\(\int_{\mathbb D}|f'(z)|^p\,(1-|z|^2)^{p+\alpha}\,dA(z)<\infty,\)
(2)\(\int_0^1r(1-r^2)^{\alpha+1}\left(\int_{|z|<r}|f'(z)|^2|f(z)|^{p-2}\,dA(z) \right)\,dr<\infty,\)
(3)\(\int_0^1r(1-r^2)^{\alpha+1}\left(\int_{|z|<r}|f'(z)|^2\,dA(z) \right)^{p/2}\,dr<\infty,\)
(4) \(\int_0^1 M_\infty^p(r,f)(1-r^2)^{\alpha+1}\,dr<\infty,\)
which extends previous results obtained in [A. Baernstein II, D. Girela, J. Á. Peláez, Ill. J. Math. 48, No. 3, 837–859 (2004; Zbl 1063.30014)].
Among other nice theorems which can also be found in the paper, it is worth to be noticed the existence of a much smaller Möbius invariant subspace of the Bloch space than \(Q_p\), \(0<p<1\), still containing all univalent Bloch functions.

MSC:

30D55 \(H^p\)-classes (MSC2000)
46E15 Banach spaces of continuous, differentiable or analytic functions
Full Text: DOI

References:

[1] J. M. Anderson, J. Clunie and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12–37.
[2] R. Aulaskari, P. Lappan, J. Xiao and R. Zhao, On {\(\alpha\)}-Bloch spaces and multipliers of Dirichlet spaces, J. Math. Anal. Appl. 209 (1997), 103–121. · Zbl 0892.30030 · doi:10.1006/jmaa.1997.5345
[3] R. Aulaskari, D. A. Stegenga and J. Xiao, Some subclasses of BMOA and their characterization in terms of Carleson measures, Rocky Mountain J. Math. 26 (1996), 485–506. · Zbl 0861.30033 · doi:10.1216/rmjm/1181072070
[4] R. Aulaskari, J. Xiao and R. Zhao, On subspaces and subsets of BMOA and UBC, Analysis 15 (1995), 101–121. · Zbl 0835.30027
[5] A. Baernstein II, Analytic functions of bounded mean oscillation, in Aspects of Contemporary Complex Analysis, D. Brannan and J. Clunie (eds.), Academic Press (1980), 3–36. · Zbl 0492.30026
[6] A. Baernstein II, Coefficients of univalent functions with restricted maximum modulus, Complex Variables Theory Appl. 5 (1986), 225–236. · Zbl 0553.30013
[7] A. Baernstein II, D. Girela and J. A. Peláez, Univalent functions, Hardy spaces and spaces of Dirichlet type, Illinois J. Math. 48 (2004), 837–859. · Zbl 1063.30014
[8] L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921–930. · Zbl 0085.06504 · doi:10.2307/2372840
[9] L. Carleson, Interpolations by bounded functions and the corona problem, Ann. of Math. (2) 76 (1962), 547–559. · Zbl 0112.29702 · doi:10.2307/1970375
[10] J. J. Donaire, D. Girela and D. Vukotić, On univalent functions in some Möbius invariant spaces, J. Reine Angew. Math. 553 (2002), 43–72. · Zbl 1006.30031 · doi:10.1515/crll.2002.102
[11] P. Duren, Theory of H p Spaces, Academic Press, New York-London, 1970. · Zbl 0215.20203
[12] P. Duren, Univalent Functions, Springer-Verlag, New York, 1983.
[13] P. Duren and A. Schuster, Bergman Spaces, American Mathematical Society, Providence, RI, 2004.
[14] J. Feng and T. H. MacGregor, Estimates on integral means of the derivatives of univalent functions, J. Anal. Math. 29 (1976), 203–231. · Zbl 0371.30014 · doi:10.1007/BF02789979
[15] T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalitites, J. Math. Anal. Appl. 38 (1972), 746–765. · Zbl 0246.30031 · doi:10.1016/0022-247X(72)90081-9
[16] J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981. · Zbl 0469.30024
[17] D. Girela, M. Pavlović and J. A. Peláez, Spaces of analytic functions of Hardy-Bloch type, J. Anal. Math. 100 (2006), 53–81. · Zbl 1173.30320 · doi:10.1007/BF02916755
[18] W. K. Hayman, Multivalent Functions, Cambridge University Press, Cambridge, 1958.
[19] H. Hedenmalm, B. Korenblum and K. Zhu, Theory of Bergman Spaces, Springer-Verlag, New York, 2000. · Zbl 0955.32003
[20] G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals II, Math. Z. 34 (1932), 403–439. · Zbl 0003.15601 · doi:10.1007/BF01180596
[21] P. Koosis, Introduction to H p Spaces, 2nd edition, Cambridge University Press, Cambridge, 1998. · Zbl 1024.30001
[22] J. E. Littlewood and R. E. A. C. Paley, Theorems on Fourier series and power series (II), Proc. London Math. Soc. 42 (1936), 52–89. · Zbl 0015.25402 · doi:10.1112/plms/s2-42.1.52
[23] D. Luecking, A new proof of an inequality of Littlewood and Paley, Proc. Amer. Math. Soc. 103 (1988), 887–893. · Zbl 0665.30035 · doi:10.1090/S0002-9939-1988-0947675-0
[24] M. Mateljević and M. Pavlović, L p -behaviour of power series with positive coefficients and Hardy spaces, Proc. Amer. Math. Soc. 87 (1983), 309–316.
[25] J. A. Peláez, Contribuciones a la teoría de ciertos espacios de funciones analíticas, PhD thesis, Universidad de Málaga, 2004.
[26] F. Pérez-González and J. Rättyä, Forelli-Rudin estimates, Carleson measures and F(p, q, s)-functions, J. Math. Anal. Appl. 315 (2006), 394–414. · Zbl 1097.30040 · doi:10.1016/j.jmaa.2005.10.034
[27] Ch. Pommerenke, Uber die Mittelwerte und Koeffizienten multivalenter Funktionen, Math. Ann. 145 (1961/62), 285–296. · Zbl 0117.04302 · doi:10.1007/BF01451371
[28] Ch. Pommerenke, Relations between the coefficients of a univalent function, Invent. Math. 3 (1967), 1–15. · Zbl 0165.09201 · doi:10.1007/BF01425487
[29] Ch. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975.
[30] Ch. Pommerenke, Schlichte Funktionen and analytische Funktionen von beschränkten mittlerer Oszillation, Comment. Math. Helv. 52 (1977), 591–602. · Zbl 0369.30012 · doi:10.1007/BF02567392
[31] Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992. · Zbl 0762.30001
[32] H. Prawitz, Über Mittelwerte analytischer Funktionen, Ark. Mat. Astr. Fys. 20 (1927), 1–12. · JFM 53.0307.02
[33] L. A. Rubel and R. M. Timoney, An extremal property of the Bloch space, Proc. Amer. Math. Soc. 75 (1979), 45–49. · Zbl 0405.46020 · doi:10.1090/S0002-9939-1979-0529210-9
[34] J. Rättyä, On some complex function spaces and classes, Ann. Acad. Sci. Fenn. Math. Diss. No. 124 (2001).
[35] W. Smith, Composition operators between Bergman and Hardy spaces, Trans. Amer. Math. Soc. 348 (1996), 2331–2348. · Zbl 0857.47020 · doi:10.1090/S0002-9947-96-01647-9
[36] C. S. Stanton, Counting functions and majorization for Jensen measures, Pacific J. Math. 125 (1986), 459–468. · Zbl 0566.32011
[37] P. Stein, On a theorem of M. Riesz, J. London Math. Soc. 8 (1933), 242–247. · Zbl 0007.35003 · doi:10.1112/jlms/s1-8.4.242
[38] S. A. Vinogradov, Multiplication and division in the space of analytic functions with an area-integrable derivative, and in some related spaces, (Russian), Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov (POMI) 222 (1995), Issled. po Linein. Oper. i Teor. Funktsii 23, 45–77, 308; translation in J. Math. Sci. (New York) 87 (1997), no. 5, 3806–3827. · Zbl 0909.30029
[39] D. Walsh, A property of univalent functions in A p , Glasg. Math. J. 42 (2000), 121–124. · Zbl 0948.30019 · doi:10.1017/S0017089500010144
[40] J. Xiao, Holomorphic Q classes, Lecture Notes in Mathematics, 1767, Springer-Verlag, Berlin, 2001. · Zbl 0983.30001
[41] J. Xiao, Geometric Q p functions, Birkhäuser Verlag, Basel, 2006.
[42] S. Yamashita, Criteria for functions to be of Hardy class H p , Proc. Amer. Math. Soc. 75 (1979), 69–72. · Zbl 0408.30040
[43] R. Zhao, On a general family of function spaces, Ann. Acad. Sci. Fenn. Math. Diss. No. 105, 1996. · Zbl 0851.30017
[44] R. Zhao, On {\(\alpha\)}-Bloch functions and VMOA, Acta. Math. Sci. 16 (1996), 349–360.
[45] K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, Inc., New York, 1990. · Zbl 0706.47019
[46] K. Zhu, Translating inequalities between Hardy and Bergman spaces, Amer. Math. Monthly 111 (2004), 520–525. · Zbl 1072.46017 · doi:10.2307/4145071
[47] A. Zygmund, Trigonometric Series, 2nd ed. Vols. I and II, Cambridge University Press, New York, 1959. · Zbl 0085.05601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.