×

Non-commutative complex differential geometry. (English) Zbl 1286.32008

The non-commutative algebraic geometry has its roots in the seminal paper by J.-P. Serre [Ann. Math. (2) 61, 197–278 (1955; Zbl 0067.16201)]; the main result says that the category of coherent sheaves over an algebraic variety is equivalent to such of the projective modules over its coordinate ring. The bottom line is that projective modules “don’t care” whether the ring is commutative or not, thus in principle all algebraic geometry can be rephrased in terms of the non-commutative algebras. This observation would remain a mere curiosity if not an astounding example of the non-commutative coordinate rings of elliptic curve (the Sklyanin algebras) was constructed by E. K. Sklyanin [Funct. Anal. Appl. 16, 263–270 (1983); translation from Funkts. Anal. Prilozh. 16, No. 4, 27–34 (1982; Zbl 0513.58028)]. For a survey of this already formidable area of mathematics we refer the reader to J. T. Stafford and M. Van den Bergh [Bull. Am. Math. Soc., New Ser. 38, No. 2, 171–216 (2001; Zbl 1042.16016)] and A. V. Odesskij [Russ. Math. Surv. 57, No. 6, 1127–1162 (2002); translation from Usp. Mat. Nauk 57, No. 6, 87–122 (2002; Zbl 1062.16035)].
The paper under review uses the Chow Embedding Theorem linking the algebraic geometry with compact complex manifolds to recast the latter in terms of non-commutative algebras; the study is focused on the non-commutative analogues of almost complex structures, holomorphic curvature, cohomology and holomorphic sheaves. The paper is clearly written and well explained; it is highly recommended to the graduate students as well as experts in the field of noncommutative geometry.

MSC:

32J99 Compact analytic spaces
14A22 Noncommutative algebraic geometry
32L10 Sheaves and cohomology of sections of holomorphic vector bundles, general results
32Q60 Almost complex manifolds
58B34 Noncommutative geometry (à la Connes)
46L87 Noncommutative differential geometry

References:

[1] Newlander, A.; Nirenberg, L., Complex analytic coordinates in almost complex manifolds, Ann. of Math., 65, 391-404 (1957) · Zbl 0079.16102
[2] Serre, J. P., Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier (Grenoble), 6, 1-42 (1956) · Zbl 0075.30401
[3] Stafford, J. T.; Van den Bergh, M., Noncommutative curves and noncommutative surfaces, Bull. Amer. Math. Soc., 38, 171-216 (2001) · Zbl 1042.16016
[4] Polishchuk, A.; Schwarz, A., Categories of holomorphic vector bundles on non-commutative two-tori, Comm. Math. Phys., 236, 1, 135-159 (2003) · Zbl 1033.58009
[5] Heckenberger, I.; Kolb, S., De Rham complex for quantized irreducible flag manifolds, J. Algebra, 305, 2, 704-741 (2006) · Zbl 1169.58301
[6] Heckenberger, I.; Kolb, S., De Rham complex via the Bernstein-Gelfand-Gelfand resolution for quantized irreducible flag manifolds, J. Geom. Phys., 57, 2316-2344 (2007) · Zbl 1175.17004
[7] D’Andrea, F.; Dabrowski, L.; Landi, G., The non-commutative geometry of the quantum projective plane, Rev. Math. Phys., 20, 979-1006 (2008) · Zbl 1155.81024
[8] D’Andrea, F.; Landi, G., Anti-selfdual connections on the quantum projective plane: monopoles, Comm. Math. Phys., 297, 841-893 (2010) · Zbl 1221.58018
[9] Khalkhali, M.; Landi, G.; van Suijlekom, W. D., Holomorphic structures on the quantum projective line, Int. Math. Res. Not. IMRN, 4, 851-884 (2011) · Zbl 1219.58002
[10] Khalkhali, M.; Moatadelro, A., The homogeneous coordinate ring of the quantum projective plane, J. Geom. Phys., 61, 276-289 (2011) · Zbl 1205.58003
[11] Khalkhali, M.; Moatadelro, A., Noncommutative complex geometry of the quantum projective space, J. Geom. Phys., 61, 2436-2452 (2011) · Zbl 1270.81114
[12] Ó Buachalla, R., Quantum bundles and noncommutative complex structures · Zbl 1330.81130
[13] Connes, A., Non-Commutative Differential Geometry, 41-144 (1985), Publ. I.H.E.S., Tome 62 · Zbl 0592.46056
[15] Woronowicz, S. L., Differential calculus on compact matrix pseudogroups (quantum groups), Comm. Math. Phys., 122, 1, 125-170 (1989) · Zbl 0751.58042
[16] Brzeziński, T.; Dabrowski, H.; Rembieliński, J., On the quantum differential calculus and the quantum holomorphicity, J. Math. Phys., 33, 19-24 (1992) · Zbl 0753.17017
[17] Chu, C.-S.; Ho, P.-M.; Zumino, B., Some complex quantum manifolds and their geometry, (Quantum Fields and Quantum Space Time (Cargse, 1996). Quantum Fields and Quantum Space Time (Cargse, 1996), NATO Adv. Sci. Inst. Ser. B Phys., vol. 364 (1997), Plenum: Plenum New York), 281-322 · Zbl 0938.58005
[18] Dieng, M.; Schwarz, A., Differential and complex geometry of two-dimensional noncommutative tori, Lett. Math. Phys., 61, 263-270 (2002) · Zbl 1019.58004
[19] Klimyk, S., A note on noncommutative holomorphic and harmonic functions on the unit disk, (Analysis, Geometry and Topology of Elliptic Operators (2006), World Sci. Publ: World Sci. Publ Hackensack, NJ), 383-400 · Zbl 1127.46047
[20] Majid, S., Noncommutative Riemannian and spin geometry of the standard \(q\)-sphere, Comm. Math. Phys., 256, 255-285 (2005) · Zbl 1075.58004
[21] Sinel’shchikov, S.; Vaksman, L., Quantum groups and non-commutative complex analysis · Zbl 0960.81046
[22] Brain, S. J.; Majid, S., Quantisation of twistor theory by cocycle twist, Comm. Math. Phys., 284, 713-774 (2008) · Zbl 1162.58002
[23] Beggs, E. J.; Majid, S., Bar categories and star operations, Algebr. Represent. Theory, 12, 103-152 (2009) · Zbl 1180.18002
[24] Gracia-Bondía, J. M.; Várailly, J. C.; Figueroa, H., Elements of Noncommutative Geometry (2000), Birkhäuser
[25] Klimek, A.; Schmüdgen, K., (Quantum Groups and Their Representations. Quantum Groups and Their Representations, Texts and Monog. in Physics (1997), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0891.17010
[26] Cuntz, J.; Quillen, D., Algebra extensions and nonsingularity, J. Amer. Math. Soc., 8, 251-289 (1995) · Zbl 0838.19001
[27] Huybrechts, D., Complex Geometry: An Introduction, Universitext (2004), Springer-Verlag
[28] Voisin, C., Hodge theory and complex algebraic geometry I, Cambridge Stud. Adv. Math., 76 (2002) · Zbl 1005.14002
[29] Griffiths, P.; Harris, J., Principles of Algebraic Geometry (1978), Wiley: Wiley New York · Zbl 0408.14001
[30] Weibel, C., (An Introduction to Homological Algebra. An Introduction to Homological Algebra, Camb. Studies in Adv. Math., No. 38 (1994), Camb. Univ. Press) · Zbl 0797.18001
[31] Beggs, E. J.; Brzeziński, T., The Serre spectral sequence of a noncommutative fibration for de Rham cohomology, Acta Math., 195, 155-196 (2005) · Zbl 1130.46044
[32] Artin, M.; Tate, J.; Van den Bergh, M., Some algebras related to automorphisms of elliptic curves, (The Grothendieck Festschrift, vol. 1 (1990), Birkhauser: Birkhauser Boston), 33-85 · Zbl 0744.14024
[33] Artin, M.; Tate, J.; Van den Bergh, M., Modules over regular algebras of dimension 3, Invent. Math., 106, 335-388 (1991) · Zbl 0763.14001
[34] Artin, M.; Zhang, J. J., Non-commutative projective schemes, Adv. Math., 109, 228-287 (1994) · Zbl 0833.14002
[35] Krause, G.; Lenagan, T. H., (Growth of Algebras and Gelfand-Kirillov Dimension. Growth of Algebras and Gelfand-Kirillov Dimension, Grad. Studies in Math., vol. 22 (2000), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI) · Zbl 0957.16001
[36] Van den Bergh, M., Blowing up on non-commutative smooth surfaces, Mem. Amer. Math. Soc., 154, 734 (2001) · Zbl 0998.14002
[37] Smith, S. P., Subspaces of non-commutative spaces, Trans. Amer. Math. Soc., 354, 2131-2171 (2002) · Zbl 0998.14003
[38] Gabriel, P., Des catégories abéliennes, Bull. Soc. Math. France, 90, 323-448 (1962) · Zbl 0201.35602
[39] Artin, M.; Schelter, W., Graded algebras of global dimension, 3, Adv. Math., 66, 171-216 (1987) · Zbl 0633.16001
[40] Carlson, J.; Müller-Stach, S.; Peters, C., (Period Mappings and Period Domains. Period Mappings and Period Domains, Camb. Studies in Adv. Math., vol. 85 (2003), Camb. Univ. Press) · Zbl 1030.14004
[41] Martínez, P. J.; Peña, J. L.; Panaite, F.; Van Oystaeyen, F., On iterated twisted tensor products of algebras, Int. J. Math., 19, 9, 1053-1101 (2008) · Zbl 1167.16023
[42] Priddy, S., Koszul resolutions, Trans. Amer. Math. Soc., 152, 39-60 (1970) · Zbl 0261.18016
[43] Heckenberger, I.; Kolb, S., The locally finite part of the dual coalgebra of quantized irreducible flag manifolds, Proc. Lond. Math. Soc., 89, 2, 457-484 (2004) · Zbl 1056.58006
[44] Baston, R. J.; Eastwood, M. G., The Penrose Transform (1989), Oxford University Press: Oxford University Press Oxford · Zbl 0726.58004
[45] Helgason, S., (Differential Geometry, Lie Groups and Symmetric Spaces. Differential Geometry, Lie Groups and Symmetric Spaces, Pure and Appl. Math., vol. 80 (1978), Academic Press: Academic Press New York) · Zbl 0451.53038
[46] Soibelman, Y., On quantum flag manifolds, Funct. Anal. Appl., 26, 225-227 (1992) · Zbl 0820.17017
[47] Stokman, J. V.; Dijkhuizen, M., Quantized flag manifolds and irreducible \(\ast \)-representations, Comm. Math. Phys., 203, 297-324 (1999) · Zbl 0969.58003
[48] Stokman, J. V., The quantum orbit method for generalized flag manifolds, Math. Res. Lett., 10, 469-481 (2003) · Zbl 1063.58003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.