×

A preliminary study of MV-algebras with two quantifiers which commute. (English) Zbl 1357.06004

Summary: In this paper we investigate the class of MV-algebras equipped with two quantifiers which commute as a natural generalization of diagonal-free two-dimensional cylindric algebras (see [L. Henkin et al., Cylindric algebras. Part I. With an introductory chapter: General theory of algebras. 2nd printing. New York-Oxford: North-Holland (1985; Zbl 0576.03042); Cylindric algebras. Part II. Amsterdam-New York-Oxford: North-Holland (1985; Zbl 0576.03043)]). In the 40s, Tarski first introduced cylindric algebras in order to provide an algebraic apparatus for the study of classical predicate calculus. The diagonal-free two-dimensional cylindric algebras are special cylindric algebras. The treatment here of MV-algebras is done in terms of implication and negation. This allows us to simplify some results due to A. Di Nola and R. Grigolia [Ann. Pure Appl. Logic 128, No. 1–3, 125–139 (2004; Zbl 1052.06010)] related to the characterization of a quantifier in terms of some special sub-algebra associated to it. On the other hand, we present a topological duality for this class of algebras and we apply it to characterize the congruences of one algebra via certain closed sets. Finally, we study the subvariety of this class generated by a chain of length \(n+1\) (\(n < \omega\)). We prove that the subvariety is semisimple and we characterize their simple algebras. Using a special functional algebra, we determine all the simple finite algebras of this subvariety.

MSC:

06D35 MV-algebras
03G25 Other algebras related to logic
08A30 Subalgebras, congruence relations
06D50 Lattices and duality
08C05 Categories of algebras
Full Text: DOI

References:

[1] Balbes, R., and P. Dwinger, Distributive Lattices, University of Missouri Press, 1974. · Zbl 0597.46059
[2] Belluce L. P., Grigolia R., Lettieri A.: Representations of monadic MV-algebras. Studia Logica 81(1), 123-144 (2005) · Zbl 1093.06008 · doi:10.1007/s11225-005-2805-6
[3] Bezhanishvili N.: Varieties of two-dimensional cylindric algebras. Part I: Diagonal-free case, Algebra Universalis 48(1), 11-42 (2002) · Zbl 1058.03072 · doi:10.1007/s00012-002-8203-2
[4] Boicescu, V., A. Filipoiu, G. Georgescu, and S. Rudeanu, Łukasiewicz-Moisil Algebras, Annals of Discrete Mathematics 49, North-Holland, 1991. · Zbl 0726.06007
[5] Chang C. C.: Algebraic analysis of many valued logics. Transactions of American Mathematical Society 88, 476-490 (1958) · Zbl 0084.00704 · doi:10.1090/S0002-9947-1958-0094302-9
[6] Cignoli R.: Quantifiers on distributive lattices. Discrete Mathematics 96, 183-197 (1991) · Zbl 0753.06012 · doi:10.1016/0012-365X(91)90312-P
[7] Cignoli, R., I. D’Ottaviano, and D. Mundici, Algebraic Foundations of Many-Valued Reasoning, Trends in Logic Studia Logica Library, vol. 7, Kluwer, Dordrecht, x + 231 pp., 2000. · Zbl 0937.06009
[8] Cornish W. H., Fowler P. R.: Coproduts of De Morgan algebras. Bulletin of the Australian Mathematical Society 16, 1-13 (1977) · Zbl 0329.06005 · doi:10.1017/S0004972700022966
[9] Diego, A., and R. Panzone, On measurable subalgebras associated to commuting conditional expectation operators. II, Revista de la Unión Matemática Argentina 24:1-35, 1968/1969. · Zbl 0191.46801
[10] Di Nola A., Grigolia R.: On monadic MV-algebras. Annals of Pure and Applied Logic 128(1-3), 125-139 (2004) · Zbl 1052.06010 · doi:10.1016/j.apal.2003.11.031
[11] Figallo A. V., Pascual I., Ziliani A.: Monadic distributive lattices. Logic Journal Of The IGPL 15(5-6), 535-551 (2007) · Zbl 1131.06003 · doi:10.1093/jigpal/jzm039
[12] Figallo M.: Finite diagonal-free two-dimensional cylindric algebras. Logic Journal Of The IGPL 12(6), 509-523 (2004) · Zbl 1082.03053 · doi:10.1093/jigpal/12.6.509
[13] Font J. M., Rodriguez A. J., Torrens A.: Wajsberg algebras. Stochastica 8(1), 5-31 (1984) · Zbl 0557.03040
[14] Grigolia, R., Algebric analysis of Łukasiewicz-Tarski’s n-valued logic systems, in R. Wójciki, G. Malinowski (eds.), Selected Papers on Łukasiewicz Sentencial Calculi, Ossolineum, Wroclaw, 1977, pp. 81-92.
[15] Halmos P. R.: Algebraic Logic. AMS Chelsea Publishing Company, New York (1962) · Zbl 0101.01101
[16] Henkin, H., D. Monk, and A. Tarski, Cylindric Algebras, Parts I & II, North-Holland, 1971 & 1985. · Zbl 0576.03043
[17] Iorgulescu A.: Connections between MVn-algebras and n-valued Lukasiewicz-Moisil algebras II. Discrete Mathematics 202, 113-134 (1999) · Zbl 0938.06010 · doi:10.1016/S0012-365X(98)00289-1
[18] Komori, Y., The separation theorems of the \[{\aleph_0}\] ℵ0-valued Łukasiewicz propositional logic, Reports of the Faculty of Sciences, Shizouka University 12:1-5, 1978. · Zbl 0377.02021
[19] Lattanzi, M., (n+1)-bounded Wajsberg algebras with additional operations (Spanish), Ph.D. Thesis, Universidad Nacional del Sur, 2000. · Zbl 1093.06008
[20] Lattanzi M.: Wajsberg algebras with a U-operator. Journal of Multiple-Valued Logic and Soft Computing 10(4), 315-338 (2004) · Zbl 1065.03051
[21] Lattanzi, M., and A. Petrovich, A duality for monadic (n+1)-valued MV-algebras, in Proceedings of the 9th “Dr. Antonio A. R. Monteiro” Congress (Spanish), 2008, pp. 107-117. · Zbl 1166.06005
[22] Martinez G.: The Priestley Duality for Wajsberg algebras. Studia Logica 49(1), 31-46 (1990) · Zbl 0717.03026 · doi:10.1007/BF00401552
[23] Mundici D.: Interpretation of AF C*-algebras in Lukasiewicz sentential calculus. Journal of Functional Analysis 65(1), 15-63 (1986) · Zbl 0597.46059 · doi:10.1016/0022-1236(86)90015-7
[24] Rodriguez A., Torrens A., Verdú V.: Łukasiewicz logic and Wajsberg algebras. Bulletin of the Section of Logic University of Lodz 19(2), 51-55 (1990) · Zbl 0717.03027
[25] Rutledge, J. D., A preliminary investigation of the infinitely many-valued predicate calculus, Ph.D. Thesis, Cornell University, 1959. · Zbl 1052.06010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.