×

A computational procedure for estimation of the mixing time of the random-scan Metropolis algorithm. (English) Zbl 1505.62383

Summary: Many situations, especially in Bayesian statistical inference, call for the use of a Markov chain Monte Carlo (MCMC) method as a way to draw approximate samples from an intractable probability distribution. With the use of any MCMC algorithm comes the question of how long the algorithm must run before it can be used to draw an approximate sample from the target distribution. A common method of answering this question involves verifying that the Markov chain satisfies a drift condition and an associated minorization condition [J. S. Rosenthal, J. Am. Stat. Assoc. 90, No. 430, 558–566 (1995; Zbl 0824.60077); G. L. Jones and J. P. Hobert, Stat. Sci. 16, No. 4, 312–334 (2001; Zbl 1127.60309)]. This is often difficult to do analytically, so as an alternative, it is typical to rely on output-based methods of assessing convergence. The work presented here gives a computational method of approximately verifying a drift condition and a minorization condition specifically for the symmetric random-scan Metropolis algorithm. Two examples of the use of the method described in this article are provided, and output-based methods of convergence assessment are presented in each example for comparison with the upper bound on the convergence rate obtained via the simulation-based approach.

MSC:

62-08 Computational methods for problems pertaining to statistics
65C05 Monte Carlo methods
60J05 Discrete-time Markov processes on general state spaces
62F15 Bayesian inference
Full Text: DOI

References:

[1] Chen, R.: Convergence analysis and comparisons of Markov chain Monte Carlo algorithms in digital communications. IEEE Trans. Signal Process. 50, 255-270 (2002) · doi:10.1109/78.978381
[2] Chib, S., Nardari, F., Shephard, N.: Markov chain Monte Carlo methods for generalized stochastic volatility models. J. Econ. 108, 281-316 (1998) · Zbl 1099.62539
[3] Cowles, M.K., Rosenthal, J.S.: A simulation-based approach to convergence rates for Markov chain Monte Carlo algorithms. Stat. Comput. 8, 115-124 (1998) · doi:10.1023/A:1008982016666
[4] Deller, S.C., Amiel, L., Deller, M.: Model uncertainty in ecological criminology: an application of Bayesian model averaging with rural crime data. Int. J. Crim. Soc. Theory 4(2), 683-717 (2011) · Zbl 1386.65060
[5] Eraker, B.: MCMC analysis of diffusion models with applications to finance. J. Bus. Econ. Stat. 19-2, 177-191 (2001) · doi:10.1198/073500101316970403
[6] Fort, G., Moulines, E., Roberts, G.O., Rosenthal, J.S.: On the geometric ergodicity of hybrid samplers. J. Appl. Probab. 40, 123-146 (2003) · Zbl 1028.65002 · doi:10.1239/jap/1044476831
[7] Gelman, A., Gilks, W.R., Roberts, G.O.: Weak convergence and optimal scaling of random walk metropolis algorithms. Ann. Appl. Probab. 7(1), 110-120 (1997) · Zbl 0876.60015 · doi:10.1214/aoap/1034625254
[8] Gelman, A., Rubin, D.B.: Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457-511 (1992) · Zbl 1386.65060 · doi:10.1214/ss/1177011136
[9] Geweke, J.: Bayesian Statistics. Oxford University Press, Oxford (1992) · Zbl 1093.62107
[10] Heidelberger, P., Welch, P.D.: Simulation run length control in the presence of an initial transient. Oper. Res. 31, 1109-1144 (1983) · Zbl 0532.65097 · doi:10.1287/opre.31.6.1109
[11] Hobert, J.P., Geyer, C.J.: Geometric ergodicity of Gibbs and block Gibbs samplers for a hierarchical random effects model. J. Multivar. Anal. 67, 414-430 (1998) · Zbl 0922.60069 · doi:10.1006/jmva.1998.1778
[12] Ishwaran, H., James, L.F., Sun, J.: Bayesian model selection in finite mixtures by marginal density decompositions. J. Am. Stat. Assoc. 96, 1316-1332 (2001) · Zbl 1051.62027 · doi:10.1198/016214501753382255
[13] Jarner, S.F., Hansen, E.: Geometric ergodicity of metropolis algorithms. Stoch. Process. Appl. 85, 341-361 (2000) · Zbl 0997.60070 · doi:10.1016/S0304-4149(99)00082-4
[14] Jones, G., Hobert, J.P.: Honest exploration of intractable probability distributions via Markov chain Monte Carlo. Stat. Sci. 16(4), 312-334 (2001) · Zbl 1127.60309 · doi:10.1214/ss/1015346317
[15] Jones, G., Hobert, J.P.: Sufficient burn-in for Gibbs samplers for a hierarchical random effects model. Ann. Stat. 32(2), 734-817 (2004) · Zbl 1048.62069
[16] Li, S., Pearl, D.K., Doss, H.: Phylogenetic tree construction using Markov chain Monte Carlo. J. Am. Stat. Assoc. 95, 493-508 (2000) · doi:10.1080/01621459.2000.10474227
[17] Liang, F.: Continuous contour Monte Carlo for marginal density estimation with an application to a spatial statistical model. J. Comput. Gr. Stat. 16(3), 608-632 (2007) · doi:10.1198/106186007X238459
[18] Madras, N., Sezer, D.: Quantitative bounds for Markov chain convergence: Wasserstein and total variation distances. Bernoulli 16(3), 882-908 (2010) · Zbl 1284.60143 · doi:10.3150/09-BEJ238
[19] Neal, R.M.: Annealed importance sampling. Technical Report, Department of Statistics, University of Toronto (1998) · Zbl 0876.60015
[20] Oh, M., Berger, J.O.: Adaptive importance sampling in Monte Carlo integration. Technical Report, Department of Statistics, Purdue University (1989) · Zbl 0781.65016
[21] Robert, C.P., Casella, G.: Monte Carlo Statistical Methods, 2nd edn. Springer, New York (2004) · Zbl 1096.62003 · doi:10.1007/978-1-4757-4145-2
[22] Roberts, G.O., Rosenthal, J.S.: Two convergence properties of hybrid samplers. Ann. Appl. Probab. 8, 397-407 (1998) · Zbl 0938.60055 · doi:10.1214/aoap/1028903533
[23] Roberts, G.O., Rosenthal, J.S.: Geometric ergodicity and hybrid Markov chains. Electron. Commun. Probab. 2(2), 13-25 (1997) · Zbl 0890.60061 · doi:10.1214/ECP.v2-981
[24] Roberts, G.O., Tweedie, R.L.: Geometric convergence and central limit theorems for multidimensional hastings and metropolis algorithms. Biometrika 83(1), 95-110 (1996) · Zbl 0888.60064 · doi:10.1093/biomet/83.1.95
[25] Roberts, G.O., Rosenthal, J.S.: On convergence rates of Gibbs samplers for uniform distributions. Ann. Appl. Probab. 8, 1291-1302 (1998) · Zbl 0935.60054 · doi:10.1214/aoap/1028903381
[26] Rosenthal, J.S.: Minorization conditions and convergence rates for Markov chain Monte Carlo. J. Am. Stat. Assoc. 90, 558-566 (1995) · Zbl 0824.60077 · doi:10.1080/01621459.1995.10476548
[27] Sonksen, M.D., Wang, X., Umland, K.: Bayesian partially ordered multinomial probit and logit models with an application to course redesign (2013) · Zbl 0888.60064
[28] Tierney, L.: Markov chains for exploring posterior distributions (with discussion). Ann. Stat. 22, 1701-1762 (1994) · Zbl 0829.62080 · doi:10.1214/aos/1176325750
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.