×

The diameter of the commuting graph of a finite group with trivial centre. (English) Zbl 1294.20033

The commuting graph \(\Gamma(G)\) of a group \(G\) is the graph which has vertices the non-central elements of \(G\) and two distinct vertices of \(\Gamma(G)\) are adjacent if and only if they commute in \(G\).
A. Iranmanesh and A. Jafarzadeh [J. Algebra Appl. 7, No. 1, 129-146 (2008; Zbl 1151.20013)] demonstrated that the commuting graphs of the finite symmetric and alternating groups are either disconnected or have diameter at most 5 and conjectured that there is an absolute upper bound for the diameter of a connected commuting graph of a non-Abelian finite group. M. Giudichi and C. Parker [J. Comb. Theory, Ser. A 120, No. 7, 1600-1603 (2013)] have shown that this conjecture is incorrect by constructing an infinite family of special 2-groups with commuting graphs of increasing diameter. In this paper, the authors prove that the connected components of the commuting graph of a finite group with trivial centre have diameter at most 10.
Various special kinds of finite groups with bounded diameter commuting graph were investigated by Y. Segev and G. M. Seitz [Pac. J. Math. 202, No. 1, 125-225 (2002; Zbl 1058.20015)], Iranmanesh and Jafarzadeh [loc. cit.], T. J. Woodkock [Commuting graphs of finite groups. PhD thesis, Univ. Virginia (2010)], M. Giudici and A. Pope [Australas. J. Comb. 48, 221-230 (2010; Zbl 1232.05114); J. Group Theory 17, No. 1, 131-149 (2014)], the second author [Bull. Lond. Math. Soc. 45, No. 4, 839-848 (2013; Zbl 1278.20017)].

MSC:

20D60 Arithmetic and combinatorial problems involving abstract finite groups
05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
20D05 Finite simple groups and their classification
05C40 Connectivity

Software:

Magma

References:

[1] Akbari, S.; Mohammadian, A.; Radjavi, H.; Raja, P., On the diameters of commuting graphs, Linear Algebra Appl., 418, 161-176 (2006) · Zbl 1107.05056
[2] Aschbacher, M., Finite Group Theory, Cambridge Stud. Adv. Math., vol. 10 (2000), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0965.20009
[3] Aschbacher, M.; Seitz, G. M., Involutions in Chevalley groups over fields of even order, Nagoya Math. J., 63, 1-91 (1976) · Zbl 0359.20014
[4] Bates, C.; Bundy, D.; Perkins, S.; Rowley, P., Commuting involution graphs in special linear groups, Comm. Algebra, 32, 11, 4179-4196 (2004) · Zbl 1074.20033
[5] Bates, C.; Bundy, D.; Perkins, S.; Rowley, P., Commuting involution graphs for sporadic simple groups, J. Algebra, 316, 2, 849-868 (2007) · Zbl 1131.20008
[6] Bender, H., Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festläßt, J. Algebra, 17, 527-554 (1971), (in German) · Zbl 0237.20014
[7] Bosma, W.; Cannon, J.; Playoust, C., The Magma algebra system. I. The user language, Computational Algebra and Number Theory. Computational Algebra and Number Theory, London, 1993. Computational Algebra and Number Theory. Computational Algebra and Number Theory, London, 1993, J. Symbolic Comput., 24, 3-4, 235-265 (1997) · Zbl 0898.68039
[8] Brauer, R.; Fowler, K. A., On groups of even order, Ann. of Math. (2), 62, 565-583 (1955) · Zbl 0067.01004
[9] Chigira, N.; Iiyori, N.; Yamaki, H., Non-abelian Sylow subgroups of finite groups of even order, Invent. Math., 139, 525-539 (2000) · Zbl 0961.20017
[10] Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; Wilson, R. A., Atlas of Finite Groups (1985), Clarendon Press: Clarendon Press Oxford · Zbl 0568.20001
[11] Giudici, M.; Parker, C., There is no upper bound for the diameter of the commuting graph of a finite group, J. Combin. Theory Ser. A, 120, 1600-1603 (2013) · Zbl 1314.05055
[12] Giudici, M.; Pope, A., On bounding the diameter of the commuting graph of a group, J. Group Theory (2013), in press
[13] Giudici, M.; Pope, A., The diameters of commuting graphs of linear groups and matrix rings over the integers modulo \(m\), Australas. J. Combin., 48, 221-230 (2010) · Zbl 1232.05114
[14] Gorenstein, D., Finite Groups (1968), Harper & Row, Publishers: Harper & Row, Publishers New York-London · Zbl 0185.05701
[15] Gorenstein, D.; Lyons, R.; Solomon, R., The Classification of the Finite Simple Groups, Number 3, Math. Surveys Monogr., vol. 40 (1998), Amer. Math. Soc. · Zbl 0890.20012
[17] Huppert, B., Endliche Gruppen I, Grundlehren Math. Wiss., vol. 134 (1967), Springer-Verlag: Springer-Verlag Berlin-New York · Zbl 0217.07201
[18] Iiyori, N.; Yamaki, H., Prime graph components of the simple groups of Lie type over the field of even characteristic, Proc. Japan Acad. Ser. A Math. Sci., 67, 3, 82-83 (1991) · Zbl 0770.20013
[19] Iranmanesh, A.; Jafarzadeh, A., On the commuting graph associated with the symmetric and alternating groups, J. Algebra Appl., 7, 129-146 (2008) · Zbl 1151.20013
[20] Kondratév, A. S., On prime graph components of finite simple groups, Mat. Sb.. Mat. Sb., Math. USSR-Sb., 67, 1, 235-247 (1990), 864 (in Russian); translation in: · Zbl 0698.20009
[21] Lucido, M. S., Prime graph components of finite almost simple groups, Rend. Semin. Mat. Univ. Padova. Rend. Semin. Mat. Univ. Padova, Rend. Semin. Mat. Univ. Padova, 107, 189-190 (2002), (Erratum) · Zbl 1146.20304
[22] Parker, C., The commuting graph of a soluble group, Bull. Lond. Math. Soc., 45, 4, 839-848 (2013) · Zbl 1278.20017
[23] Segev, Y.; Seitz, G. M., Anisotropic groups of type \(A_n\) and the commuting graph of finite simple groups, Pacific J. Math., 202, 125-225 (2002) · Zbl 1058.20015
[24] Solomon, R.; Woldar, A., Simple groups are characterized by their non-commuting graphs, J. Group Theory (2013), in press · Zbl 1293.20024
[25] Suzuki, M., On the prime graph of a finite simple group, an application of the method of Feit-Thompson-Bender-Glauberman, (Groups and Combinatorics, in Memory of Michio Suzuki. Groups and Combinatorics, in Memory of Michio Suzuki, Adv. Stud. Pure Math., vol. 32 (2001), Math. Soc. Japan: Math. Soc. Japan Tokyo), 41-207 · Zbl 0999.20009
[26] Ward, H. N., On Reeʼs series of simple groups, Trans. Amer. Math. Soc., 121, 62-89 (1966) · Zbl 0139.24902
[27] Williams, J. S., Prime graph components of finite groups, J. Algebra, 69, 2, 487-513 (1981) · Zbl 0471.20013
[28] Woodcock, T. J., Commuting graphs of finite groups (2010), University of Virginia, PhD thesis
[29] Zavarnitsin, A. V., On the recognition of finite groups by the prime graph, Algebra Logika. Algebra Logika, Algebra Logic, 45, 4, 220-231 (2006), 502 (in Russian); translation in: · Zbl 1115.20011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.