×

Similarity stabilizes blow up. (English) Zbl 1036.35106

This is an extended version of the author’s earlier paper [Journées Équations aux Derivées Partielles, Université de Nantes, Exp. No. 12 (1999; Zbl 1004.35062)]. The considered topic is the equation \[ \psi u_t = -L\left( | u| ^{m-1} u \right), \tag{1} \] where \(\psi(x)\) is positive and \(L\) is a self-adjoint strongly elliptic differential operator of order \(2s\). Application of the similarity transformation \[ u(t,x) = \Phi \bigl( \tau(t) \bigr) v \bigl( \tau(t), x \bigr) \qquad (\Phi > 0) \] with \[ \tau'(t) = \Phi \bigl( \tau(t) \bigr)^{m-1} \] yields the equation \[ \psi v_{\tau} = - L \left( | v| ^{m-1} v\right) - \lambda (\tau) \psi v. \tag{2} \] After defining \(\lambda\) by the condition that \(\int \psi | v| ^{m+1}\) be conserved it is proved that the solution of the rescaled equation (2) tends for \(\tau \to \infty\) to a weak solution of the equation \[ 0 = -L \left( | v| ^{m-1} v \right) - \lambda _{\infty} \psi v \] where \(\lambda_{\infty} = \lim_{\tau \to \infty} \lambda(\tau)\). This generalizes the result of C. Cortázar, M. Del Pino and M. Elgueta [Indiana Univ. Math. J. 47, 541–561 (1998; Zbl 0916.35056)].
In the sequel a special case of (1) with \(L\) of order two is considered. The main theorem claims that, under appropriate assumptions, the solution to (1) blows up in finite time while the solution to the rescaled equation (2) remains bounded.

MSC:

35K65 Degenerate parabolic equations
35K55 Nonlinear parabolic equations
35K25 Higher-order parabolic equations
Full Text: DOI

References:

[1] Bebernes, J.; Galaktionov, V. A., On classification of blow-up patterns for a quasilinear heat equation, Differential Integral Equations, 9, 655-670 (1996) · Zbl 0851.35057
[2] Cortázar, C.; Del Pino, M.; Elgueta, M., On the blow-up set for \(u_t=Δ u^m+u^{m\) · Zbl 0916.35056
[3] Cortázar, C.; Elgueta, M.; Felmer, P., Symmetry in an elliptic problem and the blow-up set of a quasilinear heat equation, Comm. Partial Differential Equations, 21, 507-520 (1996) · Zbl 0854.35033
[4] Friedman, A., Partial Differential Equations (1976), Krieger: Krieger Huntington, NY
[5] Gui, C., Symmetry of the blow-up set of a porous medium equation, Comm. Pure Appl. Math., 48, 471-500 (1995) · Zbl 0827.35014
[6] Levy, D.; Rosenau, P., On a class of thermal blow-up patterns, Phys. Lett. A, 236, 483-493 (1997) · Zbl 0969.35520
[7] Levine, H.; Sacks, P., Some existence and nonexistence theorems for solutions of degenerate parabolic equations, J. Differential Equations, 52, 135-161 (1984) · Zbl 0487.34003
[8] Samarskii, A. A.; Galaktionov, V. A.; Kurdyumov, S. P.; Mikhailov, A. P., Blow-up in Quasilinear Parabolic Equations (1995), Walter de Gruyter: Walter de Gruyter Berlin · Zbl 1020.35001
[9] S. Schochet, Similarity stabilizes blow-up, in: Journées Équations aux Derivées Partielles, St. Jean-de-Monts, Université de Nantes, 1999.; S. Schochet, Similarity stabilizes blow-up, in: Journées Équations aux Derivées Partielles, St. Jean-de-Monts, Université de Nantes, 1999. · Zbl 1004.35062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.