×

A geometric data structure for parallel finite elements and the application to multigrid methods with block smoothing. (English) Zbl 1216.65164

Summary: We present a data structure for parallel computing which is directly linked to geometric quantities of an underlying mesh and which is well adapted to the requirements of a general finite element realization. In addition, we define an abstract linear algebra model which supports multigrid methods extending our previous work [Comput. Vis. Sci. 1, No. 1, 27–40 (1997; Zbl 0970.65129)]. Finally, we apply the parallel multigrid preconditioner to several configurations in linear elasticity and we compute the condition number numerically for different smoothers, resulting in a quantitative evaluation of parallel multigrid performance.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

Citations:

Zbl 0970.65129

Software:

Madpack; UG; DUNE

References:

[1] Bastian P.: Parallele Adaptive Mehrgitterverfahren. Teubner Skripten zur Numerik. Teubner Stuttgart, Stuttgart (1996)
[2] Bastian P., Birken K., Johannsen K., Lang S., Neuß N., Rentz-Reichert H., Wieners C.: UG–a flexible software toolbox for solving partial differential equations. Comp. Vis. Sci. 1, 27–40 (1997) · Zbl 0970.65129 · doi:10.1007/s007910050003
[3] Bastian P., Blatt M., Dedner A., Engwer C., Klöfkorn R., Kornhuber R., Ohlberger M., Sander O.: A generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework. Computing 82, 103–119 (2008) · Zbl 1151.65089 · doi:10.1007/s00607-008-0003-x
[4] Bastian P., Blatt M., Dedner A., Engwer C., Klöfkorn R., Kornhuber R., Ohlberger M., Sander O.: A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE. Computing 82, 121–138 (2008) · Zbl 1151.65088 · doi:10.1007/s00607-008-0004-9
[5] Bornemann F., Yserentant H.: A basic norm equivalence for the theory of multilevel methods. Numer. Math. 64, 455–476 (1993) · Zbl 0796.65135 · doi:10.1007/BF01388699
[6] Braess, D.: Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics. Cambridge University Press (1997) · Zbl 0894.65054
[7] Bramble J.H.: Multigrid Methods. Longman Scientific & Technical, Essex (1993) · Zbl 0786.65094
[8] Bramble J.H., Zhang X.: The analysis of multigrid methods. In: Ciarlet, P., Lions, J. (eds) Numerical Methods in Scientific Computing, vol. VII of Handbook of Numerical Analysis, pp. 173–416. Elsevier Science, B.V. (2000) · Zbl 0972.65103
[9] Demmel J.W., Gilbert J.R., Li X.S.: An asynchronous parallel supernodal algorithm for sparse Gaussian elimination. SIAM J. Matrix Anal. Appl. 20(4), 915–952 (1999) · Zbl 0939.65036 · doi:10.1137/S0895479897317685
[10] Devine K.D., Boman E.G., Heaphy R.T., Hendrickson B.A., Teresco J.D., Faik J., Flaherty J.E., Gervasio L.G.: New challenges in dynamic load balancing. Appl. Numer. Math. 52(2–3), 133–152 (2005) · Zbl 1061.68025 · doi:10.1016/j.apnum.2004.08.028
[11] Douglas, C.C.: A review of numerous parallel multigrid methods. In: Astfalk, G. Applications on Advanced Architecture Computers, SIAM. Software–Environments Tools, Philadelphia, PA (1996) · Zbl 0900.65344
[12] Durst F., Schäfer M.: A parallel block-structured multigrid method for the prediction of incompressible flows. Int. J. Numer. Methods Fluids 22(6), 549–565 (1996) · Zbl 0865.76059 · doi:10.1002/(SICI)1097-0363(19960330)22:6<549::AID-FLD366>3.0.CO;2-7
[13] Flaherty J.E., Loy R.M., Özturan C., Shephard M.S., Szymanski B.K., Teresco J.D., Ziantz L.H.: Parallel structures and dynamic load balancing for adaptive finite element computation. Appl. Numer. Math. 26(1-2), 241–263 (1998) · Zbl 0901.76032 · doi:10.1016/S0168-9274(97)00094-9
[14] Golub G., Van Loan C.F.: Matrix Computations. Texts and Readings in Mathematics 43. Hindustan Book Agency, New Delhi (2007) · Zbl 1118.65316
[15] Griebel M., Zumbusch G.: Parallel multigrid in an adaptive PDE solver based on hashing and space-filling curves. Parallel Comput. 25(7), 827–843 (1999) · Zbl 0945.65138 · doi:10.1016/S0167-8191(99)00020-4
[16] Haase G., Kuhn M., Langer U.: Parallel multigrid 3D Maxwell solvers. Parallel Comput. 27(6), 761–775 (2001) · Zbl 0969.65128 · doi:10.1016/S0167-8191(00)00106-X
[17] Hackbusch W.: Multi-Grid Methods and Applications. Springer, Berlin (1985) · Zbl 0595.65106
[18] Hackbusch W.: Iterative Solution of Large Sparse Systems of Equations. Springer, Berlin (1994) · Zbl 0789.65017
[19] Hoang V., Plum M., Wieners C.: A computer-assisted proof for photonic band gaps. Z. angew. Math. Phys. (ZAMP) 60, 1–18 (2009) · Zbl 1180.78017 · doi:10.1007/s00033-008-8021-2
[20] Jung M.: On the parallelization of multi-grid methods using a non-overlapping domain decomposition data structure. Appl. Numer. Math. 23(1), 119–137 (1997) · Zbl 0879.65084 · doi:10.1016/S0168-9274(96)00064-5
[21] Lang, S.: Parallele numerische simulation instationärer Probleme mit adaptiven Methoden auf unstrukturierten Gittern. Ph.D Thesis, Universität Stuttgart (2001)
[22] Mitchell W.F.: A parallel multigrid method using the full domain partition. ETNA Electron. Trans. Numer. Anal. 6, 224–233 (1997) · Zbl 0898.65080
[23] Neff P., Chełmiński K., Müller W., Wieners C.: A numerical solution method for an inifinitesimal elasto-plastic Cosserat model. Math. Models Methods Appl. Sci. (M3AS) 17, 1211–1240 (2007) · Zbl 1137.74012 · doi:10.1142/S021820250700225X
[24] Neff P., Sydow A., Wieners C.: Numerical approximation of incremental infinitesimal gradient plasticity. Int. J. Numer. Meth. Eng. 77, 414–436 (2009) · Zbl 1155.74316 · doi:10.1002/nme.2420
[25] Neuss N.: V-cycle convergence with unsymmetric smoothers and application to an anisotropic model problem. SIAM J. Numer. Anal. 35, 1201–1212 (1998) · Zbl 0947.65132 · doi:10.1137/S0036142996310848
[26] Rüde, U.: (ed.) Special issue on multigrid computing and finite element methods. Comput. Sci. Eng. 8 (2006)
[27] Simo J.C., Hughes T.J.R.: Computational Inelasticity. Springer, Berlin (1998)
[28] Toselli A., Widlund O.: Domain Decomposition Methods–Algorithms and Theory. Springer, Berlin (2005) · Zbl 1069.65138
[29] Wieners C.: Distributed point objects. In: A new concept for parallel finite elements. Kornhuber, R., Hoppe, R., Périaux, J., Pironneau, O., Widlund, O., Xu, J. (eds) Domain Decomposition Methods in Science and Engineering, vol. 40 of Lecture Notes in Computational Science and Engineering, pp. 175–183. Springer, Berlin (2004)
[30] Wieners C.: Nonlinear solution methods for infinitesimal perfect plasticity. Z. Angew. Math. Mech. (ZAMM) 87, 643–660 (2007) · Zbl 1128.74008 · doi:10.1002/zamm.200610339
[31] Wieners C.: SQP methods for incremental plasticity with kinematic hardening. In: Reddy, D. (eds) IUTAM Symposium on Theoretical, Modelling and Computational Aspects of Inelastic Media, pp. 143–154. Springer, Berlin (2008) · Zbl 1209.74073
[32] Wieners C., Ammann M., Ehlers W.: Distributed point objects: a new concept for parallel finite elements applied to a geomechanical problem. Future Gener. Comput. Syst. 22, 532–545 (2006) · doi:10.1016/j.future.2005.04.009
[33] Wieners C., Ammann M., Ehlers W., Graf T.: Parallel Krylov methods and the application to 3-d simulations of a tri-phasic porous media model in soil mechanics. Comput. Mech. 36, 409–420 (2005) · Zbl 1102.74045 · doi:10.1007/s00466-004-0654-1
[34] Wieners, C., Karajan, N., Ehlers, W.: Parallel overlapping domain decomposition preconditioner and application to a porous media model in biomechanics. Comput. Mech. (2009)
[35] Wieners C., Karajan N., Graf T., Ehlers W.: Parallel solution methods for porous media models in biomechanics. PAMM 5, 35–38 (2005) · Zbl 1391.74164 · doi:10.1002/pamm.200510010
[36] Xu J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34, 581–613 (1992) · Zbl 0788.65037 · doi:10.1137/1034116
[37] Xu J., Zikatanov L.: The method of alternating projections and the method of subspace corrections in Hilbert space. J. Am. Math. Soc. 15, 573–597 (2002) · Zbl 0999.47015 · doi:10.1090/S0894-0347-02-00398-3
[38] Zumbusch G.: Parallel Multilevel Methods. Adaptive Mesh Refinement and Load Balancing. Adv. Numer. Math. Teubner, Wiesbaden (2003) · Zbl 1089.65127
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.