×

Small deviations for a family of smooth Gaussian processes. (English) Zbl 1297.60022

Summary: We study the small deviation probabilities of a family of very smooth self-similar Gaussian processes. The canonical process from the family has the same scaling property as standard Brownian motion and plays an important role in the study of zeros of random polynomials.
Our estimates are based on the entropy method, discovered by J. Kuelbs and W. V. Li [J. Funct. Anal. 116, No. 1, 133–157 (1993; Zbl 0799.46053)] and developed further by W. V. Li and W. Linde [Ann. Probab. 27, No. 3, 1556–1578 (1999; Zbl 0983.60026)], by F.-C. Gao [Bull. Lond. Math. Soc. 36, No. 4, 460–468 (2004; Zbl 1060.41023)], and by F. Aurzada et al. [Theory Probab. Appl. 53, No. 4, 697–707 (2009); translation from Teor. Veroyatn. Primen. 53, No. 4, 788–797 (2008; Zbl 1192.60055)]. While there are several ways to obtain the result with respect to the \(L_2\)-norm, the main contribution of this paper concerns the result with respect to the supremum norm. In this connection, we develop a tool that allows translating upper estimates for the entropy of an operator mapping into \(L_2[0,1]\) by those of the operator mapping into \(C[0,1]\), if the image of the operator is in fact a Hölder space.
The results are further applied to the entropy of function classes, generalizing results of F.-C. Gao et al. [Proc. Am. Math. Soc. 138, No. 12, 4331–4344 (2010; Zbl 1206.60020)].

MSC:

60G15 Gaussian processes
60F99 Limit theorems in probability theory
60F10 Large deviations

References:

[1] Aurzada, F., Dereich, S.: Universality of the asymptotics of the one-sided exit problem for integrated processes. Ann. Inst. Henri Poincaré (B) Probab. Stat. Preprint available from: http://arxiv.org/abs/1008.0485 · Zbl 1285.60042
[2] Aurzada, F., Ibragimov, I.A., Lifshits, M.A., van Zanten, J.H.: Small deviations of smooth stationary Gaussian processes. Teor. Veroyatn. Primen. 53, 788–798 (2008) (in Russian); translation in Theory Probab. Appl. 53, 697–707 (2009) (in English) · Zbl 1192.60055 · doi:10.4213/tvp2466
[3] Belinsky, E., Linde, W.: Compactness properties of certain integral operators related to fractional integration. Math. Z. 252, 669–686 (2006) · Zbl 1090.47032 · doi:10.1007/s00209-005-0870-1
[4] Borovkov, A.A., Ruzankin, R.S.: On small deviations of series of weighted random variables. J. Theor. Probab. 21, 628–649 (2008) · Zbl 1147.60021 · doi:10.1007/s10959-007-0130-x
[5] Carl, B., Stephani, I.: Entropy, Compactness and the Approximation of Operators. Cambridge Tracts in Mathematics, vol. 98. Cambridge University Press, Cambridge (1990) · Zbl 0705.47017
[6] Gao, F.: Entropy of absolute convex hulls in Hilbert spaces. Bull. Lond. Math. Soc. 36, 460–468 (2004) · Zbl 1060.41023 · doi:10.1112/S0024609304003121
[7] Gao, F., Li, W.V., Wellner, J.: How many Laplace transforms of probability measures are there? Proc. Am. Math. Soc. 138, 4331–4344 (2010) · Zbl 1206.60020 · doi:10.1090/S0002-9939-2010-10448-3
[8] Gordon, Y., König, H., Schütt, C.: Geometric and probabilistic estimates for entropy and approximation numbers of operators. J. Approx. Theory 49, 219–239 (1987) · Zbl 0647.47035 · doi:10.1016/0021-9045(87)90100-6
[9] Karol’, A.I., Nazarov, A.I.: Small ball probabilities for smooth Gaussian fields and tensor products of compact operators. Preprint available from: http://arxiv.org/abs/1009.4412 · Zbl 1301.60044
[10] König, H., Richter, S.: Eigenvalues of integral operators defined by analytic kernels. Math. Nachr. 119, 141–155 (1984) · Zbl 0577.47028 · doi:10.1002/mana.19841190113
[11] Kuelbs, J., Li, W.V.: Metric entropy and the small ball problem for Gaussian measures. J. Funct. Anal. 116, 133–157 (1993) · Zbl 0799.46053 · doi:10.1006/jfan.1993.1107
[12] Kühn, T.: Covering numbers of Gaussian reproducing kernel Hilbert spaces. J. Complex. 27, 489–499 (2011) · Zbl 1221.68195 · doi:10.1016/j.jco.2011.01.005
[13] Laptev, A.A.: Spectral asymptotic behavior of a class of integral operators. Mat. Zametki 16, 741–750 (1974) (in Russian); translation in: Math. Notes 16, 1038–1043 (1974) (in English)
[14] Li, W.V.: Small value probabilities: techniques and applications. Lecture notes. http://www.math.udel.edu/wli/svp.html
[15] Li, W.V., Linde, W.: Approximation, metric entropy and small ball estimates for Gaussian measures. Ann. Probab. 27, 1556–1578 (1999) · Zbl 0983.60026 · doi:10.1214/aop/1022677459
[16] Li, W.V., Shao, Q.-M.: Gaussian processes: inequalities, small ball probabilities and applications. In: Stochastic Processes: Theory and Methods. Handbook of Statist, vol. 19, pp. 533–597. North-Holland, Amsterdam (2001) · Zbl 0987.60053
[17] Li, W.V., Shao, Q.-M.: Lower tail probabilities for Gaussian processes. Ann. Probab. 32, 216–242 (2004) · Zbl 1052.60028 · doi:10.1214/009117904000000045
[18] Li, W.V., Shao, Q.-M.: Recent developments on lower tail probabilities for Gaussian processes. COSMOS, J. Singapore Nat. Acad. Sci. 1, 95–106 (2005)
[19] Lifshits, M.A.: Bibliography compilation on small deviation probabilities (2010). Available from: http://www.proba.jussieu.fr/pageperso/smalldev/biblio.html
[20] Majumdar, S.N.: Persistence in nonequilibrium systems. Curr. Sci. 77, 370–375 (1999). http://arxiv.org/abs/cond-mat/9907407
[21] Nazarov, A.: Log-level comparison principle for small ball probabilities. Stat. Probab. Lett. 79, 481–486 (2009) · Zbl 1166.60310 · doi:10.1016/j.spl.2008.09.021
[22] van der Vaart, A.W., van Zanten, J.H.: Rates of contraction of posterior distributions based on Gaussian process priors. Ann. Stat. 36, 1435–1463 (2008) · Zbl 1141.60018 · doi:10.1214/009053607000000613
[23] Widom, H.: Asymptotic behavior of the eigenvalues of certain integral equations. II. Arch. Ration. Mech. Anal. 17, 215–229 (1964) · Zbl 0183.11701 · doi:10.1007/BF00282438
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.