×

Applications of SAGBI-bases in dynamics. (English) Zbl 1028.65137

From the abstract: The classical reduction techniques of bifurcation theory, Lyapunov-Schmidt reduction and centre manifold reduction, are investigated where symmetry is present. The symmetry is given by the action of a finite or continuous group. The symmetry is exploited systematically by using the algebraic structure of the module of equivariant polynomial tuples. We generalize the concept of SAGBI-bases to module-SAGBI basis and explain how to use this concept within the two reduction techniques. Examples illustrate the theoretical results. In particular the reduction onto centre manifold is performed for the Taylor-Couette problem with \(SO(2)\times O(2)\)-symmetry.
In this interdisciplinary paper we suggest the application of computational algebra to the theory of dynamical systems. This is on the line of previous work on orbit space reduction [cf. K. Gatermann, Computer algebra methods for equivariant dynamical systems. Lect. Notes Math. 1728 (2000; Zbl 0944.65131)] and singularity theory for Hamiltonian systems.

MSC:

65P30 Numerical bifurcation problems
68W30 Symbolic computation and algebraic computation
37M20 Computational methods for bifurcation problems in dynamical systems
37J20 Bifurcation problems for finite-dimensional Hamiltonian and Lagrangian systems
37C80 Symmetries, equivariant dynamical systems (MSC2010)
37G40 Dynamical aspects of symmetries, equivariant bifurcation theory
13P10 Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases)
34C20 Transformation and reduction of ordinary differential equations and systems, normal forms
34C23 Bifurcation theory for ordinary differential equations
35B32 Bifurcations in context of PDEs
76E06 Convection in hydrodynamic stability

Citations:

Zbl 0944.65131

Software:

Macaulay2
Full Text: DOI

References:

[1] Adams, W. W.; Hoşten, S.; Loustaunau, P.; Miller, J. L., SAGBI- and SAGBI-Gröbner bases over principal ideal domains, J. Symbolic Comput., 27, 31-47 (1999) · Zbl 0930.13021
[2] Ashwin, P.; Böhmer, K.; Mei, Z., A numerical Liapunov-Schmidt method with applications to Hopf bifurcation on a square, Math. Comp., 64, 210, 649-670 (1995) · Zbl 0829.65075
[3] Böhmer, K., On hybrid methods for bifurcation and center manifolds for general operators, (Fiedler, B., Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems (2001), Springer: Springer Berlin), 73-107 · Zbl 0998.65125
[4] Böhmer, K.; Govaerts, W.; Janovský, V., Numerical detection of symmetry breaking bifurcation points with nonlinear degeneracies, Math. Comp., 68, 1097-1108 (1999) · Zbl 0918.65039
[5] Böhmer, K.; Janovská, D.; Janovský, V., Computer aided analysis of imperfect bifurcation diagrams, East-West J. Numer. Math., 6, 207-222 (1998) · Zbl 0914.65085
[6] Chossat, P.; Iooss, G., The Taylor-Couette Problem, (Applied Mathematical Sciences, vol. 102 (1994), Springer: Springer New York) · Zbl 0607.76051
[7] Chossat, P.; Lauterbach, R., Methods in Equivariant Bifurcations and Dynamical Systems, (Advanced Series in Nonlinear Dynamics, vol. 15 (2000), World Scientific: World Scientific Singapore) · Zbl 0968.37001
[8] Cushman, R.; Sanders, J. A., A survey of invariant theory applied to normal forms of vector fields with nilpotent linear part, (Stanton, D., Invariant Theory and Tableaux. Invariant Theory and Tableaux, IMA Volumes in Mathematics and its Applications, vol. 19 (1987), Springer: Springer New York), 82-106 · Zbl 0712.58053
[9] Dan Henry, Geometric Theory of Semilinear Parabolic Equations, (Lecture Notes in Mathematics, vol. 840 (1981), Springer: Springer Berlin) · Zbl 0456.35001
[10] Derksen, H.; Kemper, G., Computational Invariant Theory, (Encyclopaedia of Mathematical Sciences, vol. 130 (2002), Springer: Springer Berlin) · Zbl 1011.13003
[11] Elphick, C.; Tirapegui, E.; Brachet, M. E.; Coullet, P.; Iooss, G., A simple global characterization for normal forms of singular vector fields, Phys. D, 29, 95-127 (1987) · Zbl 0633.58020
[12] García Gómez, C., 2001. Sagbi-Basen: Implementation und Anwendung. Diploma Thesis at Universität Hamburg (in German); García Gómez, C., 2001. Sagbi-Basen: Implementation und Anwendung. Diploma Thesis at Universität Hamburg (in German)
[13] Gatermann, K., Computer Algebra Methods for Equivariant Dynamical Systems, (Lecture Notes in Mathematics, vol. 1728 (2000), Springer: Springer Berlin) · Zbl 0944.65131
[14] Golubitsky, M.; Schaeffer, D. G., Singularities and Groups in Bifurcation Theory I, (Applied Mathematical Sciences, vol. 51 (1985), Springer: Springer New York) · Zbl 0607.35004
[15] Govaerts, W. J.F., Numerical Methods for Bifurcations of Dynamical Equilibria (2000), SIAM: SIAM Philadelphia · Zbl 0935.37054
[16] Grayson, D.R., Stillman, M.E., 1998. Macaulay 2, a software system for research in algebraic geometry. Available from http://www.math.uiuc.edu/Macaulay2; Grayson, D.R., Stillman, M.E., 1998. Macaulay 2, a software system for research in algebraic geometry. Available from http://www.math.uiuc.edu/Macaulay2
[17] Jepson, A. D.; Spence, A., On a reduction process for nonlinear equations, SIAM J. Math. Anal., 20, 39-56 (1989) · Zbl 0685.58003
[18] Kapur, D.; Madlener, K., A completion procedure for computing a canonical basis for a \(k\)-algebra, (Computers and Mathematics (1989), MIT: MIT Cambridge), 1-11 · Zbl 0692.13001
[19] Laure, P.; Demay, Y., Symbolic computations and equations on the center manifold: application to the Couette-Taylor problem, Comput. & Fluids, 16, 3, 229-238 (1988) · Zbl 0662.76129
[20] Lunter, G., 1999. Bifurcations in Hamiltonian Systems, Computing Singularities by Gröbner Bases. Ph.D. Thesis, Department of Mathematics, Rijksuniversiteit Groningen; Lunter, G., 1999. Bifurcations in Hamiltonian Systems, Computing Singularities by Gröbner Bases. Ph.D. Thesis, Department of Mathematics, Rijksuniversiteit Groningen
[21] Mei, Z., Numerical Bifurcation Analysis for Reaction-Diffusion Equations, (Springer Series in Computational Mathematics, vol. 28 (2000), Springer: Springer Berlin) · Zbl 0952.65105
[22] Miller, J. L., Analogs of Gröbner bases in polynomial rings over a ring, J. Symbolic Comput., 21, 139-153 (1996) · Zbl 0867.13007
[23] Miller, J. L., Effective algorithms for intrinsically computing SAGBI-Gröbner-bases in a polynomial ring over a field, (Buchberger, B.; Winkler, F., Gröbner Bases and Applications. Gröbner Bases and Applications, London Mathematical Society Lecture Notes Series, vol. 251 (1998), Cambridge University Press), 421-433 · Zbl 0916.13012
[24] Murdock, J., Normal Forms and Unfoldings for Local Dynamical Systems, (Springer Monographs in Mathematics (2002), Springer: Springer New York) · Zbl 1014.37001
[25] Robbiano, L.; Sweedler, M., Subalgebra bases, (Bruns, W.; Simis, A., Commutative Algebra Salvador. Commutative Algebra Salvador, Lecture Notes in Mathematics, vol. 1430 (1988), Springer: Springer New York), 61-87 · Zbl 0725.13013
[26] Rodriguez, J. D.; Geiger, C.; Dangelmayr, G.; Güttinger, W., Symmetry breaking bifurcations in spherical Bénard convection part II: numerical results, (Chadam, J.; Golubitsky, M.; Langford, W.; Wetton, B., Pattern Formation: Symmetry Methods and Applications. Fields Institute Communications (1996), American Mathematical Society), 239-253 · Zbl 0858.76027
[27] Sturmfels, B., Gröbner Bases and Convex Polytopes, (University Lecture Series, vol. 8 (1996), AMS: AMS Providence, RI) · Zbl 0856.13020
[28] Vanderbauwhede, A., Centre manifolds, normal forms and elementary bifurcations, (Kirchgraber, U.; Walther, H. O., Dynamics Reported a Series in Dynamical Systems and Their Applications, vol. 2 (1989), B.G. Teubner: B.G. Teubner Stuttgart), 89-169 · Zbl 0677.58001
[29] Vasconcelos, W. V., Computational Methods in Commutative Algebra and Algebraic Geometry, (Algorithms and Computation in Mathematics, vol. 2 (1998), Springer: Springer Berlin) · Zbl 0188.33701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.