×

An improved algorithm for fixed-hub single allocation problems. (English) Zbl 1394.90169

Summary: This paper discusses the fixed-hub single allocation problem (FHSAP). In this problem, a network consists of hub nodes and terminal nodes. Hubs are fixed and fully connected; each terminal node is assigned to a single hub which routes all its traffic. The goal is to minimize the cost of routing the traffic in the network. In this paper, we propose a new linear programming (LP) relaxation for this problem by incorporating a set of validity constraints into the classical formulations by A. T. Ernst and M. Krishnamoorthy [Locat. Sci. 4, No. 3, 139–154 (1996; Zbl 0927.90065); Ann. Oper. Res. 86, 141–159 (1999; Zbl 0918.90096)]. A geometric rounding algorithm is then used to obtain an integral solution from the fractional solution. We show that by incorporating the validity constraints, the strengthened LP often provides much tighter upper bounds than the previous methods with a little more computational effort and the solution obtained often has a much smaller gap with the optimal solution. We also formulate a robust version of the FHSAP and show that it can guard against data uncertainty with little costs.

MSC:

90B18 Communication networks in operations research
90B80 Discrete location and assignment
90C05 Linear programming

References:

[1] Campbell, J.; Ernst, A.; Krishnamoorthy, M.; Drezner, Z. (ed.); Hamcher, HW (ed.), Hub location problems (2002), Berlin · Zbl 1061.90069
[2] Sohn, J., Park, S.: The single-allocation problem in the interacting three-hub network. Networks 35(1), 17-25 (2000) · Zbl 0938.90070 · doi:10.1002/(SICI)1097-0037(200001)35:1<17::AID-NET2>3.0.CO;2-N
[3] O’Kelly, M.: A quadratic integer program for the location of interacting hub facilities. Eur. J. Oper. Res. 33, 393-402 (1987) · Zbl 0627.90030 · doi:10.1016/S0377-2217(87)80007-3
[4] Klincewicz, J.: Heuristics for the \[p\] p-hub location problem. Eur. J. Oper. Res. 53, 25-37 (1991) · Zbl 0726.90042 · doi:10.1016/0377-2217(91)90090-I
[5] Campbell, J.: Hub location and the \[p\] p-hub median problem. Oper. Res. 44, 925-935 (1996) · Zbl 0879.90127 · doi:10.1287/opre.44.6.923
[6] Skorin-Kapov, D., Skorin-Kapov, J., O’kelly, M.: Tight linear programming relaxations of uncapacitated \[p\] p-hub median problems. Eur. J. Oper. Res. 94, 582-593 (1996) · Zbl 0947.90602 · doi:10.1016/0377-2217(95)00100-X
[7] Ernst, A., Krishnamoorthy, M.: Efficient algorithms for the uncapacitated single allocation \[p\] p-hub median problem. Locat. Sci. 4(3), 139-154 (1996) · Zbl 0927.90065 · doi:10.1016/S0966-8349(96)00011-3
[8] Ernst, A., Krishnamoorthy, M.: Solution algorithms for the capacitated single allocation hub location problem. Ann. Oper. Res. 86, 141-159 (1999) · Zbl 0918.90096 · doi:10.1023/A:1018994432663
[9] Campbell, J.: Integer programming formulation of discrete hub location problems. Eur. J. Oper. Res. 72, 387-405 (1994) · Zbl 0790.90048 · doi:10.1016/0377-2217(94)90318-2
[10] O’Kelly, M., Bryan, D., Skorin-Kapov, D., Skorin-Kapov, J.: Hub network design with single and multiple allocation: a computational study. Locat. Sci. 4, 125-138 (1996) · Zbl 0927.90069 · doi:10.1016/S0966-8349(96)00015-0
[11] O’Kelly, M., Skorin-Kapov, D., Skorin-Kapov, J.: Lower bounds for the hub location problem. Manag. Sci. 41, 713-721 (1995) · Zbl 0836.90109 · doi:10.1287/mnsc.41.4.713
[12] Ge, D., He, S., Ye, Y., Zhang, J.: Geometric rounding: dependent randomized rounding scheme. J. Comb. Optim. 22(4), 699-725 (2011) · Zbl 1236.90081 · doi:10.1007/s10878-010-9320-z
[13] Kleinberg, J., Tardos, E.: Approximation algorithms for classification problems with pairwise relationships: metric labeling and markov random fields. J. ACM 49(5), 616-639 (2002) · Zbl 1326.68336 · doi:10.1145/585265.585268
[14] Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009) · Zbl 1221.90001 · doi:10.1515/9781400831050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.