×

Constructive Krull dimension. I: Integral extensions. (English) Zbl 1172.13007

The well-known classical theorem that an integral extension doesn’t change the Krull dimension is treated here from a constructive point of view. Although the Krull dimension Kdim A is not in general a well defined element of \(\mathbb N\cup\{\infty\}\), the sentence that ” Kdim A\(\leq d\)” is well defined and it so happens that most of the classical theorems regarding the Krull dimension are using statements of the latter kind. The authors’ starting point is a theorem that defines Krull dimension in several (constructive) ways, all equivalent to the classical definition, such as: Via induction using ideal boundary, induction using monoid boundary, iterated boundaries, and symmetric form. This is then followed by a number of (constructive) intermediate lemmas and the main results are thus proved constructively:
Theorem 3.4. If B is algebraic over A then KdimB\(\leq\) KdimA.
Corollary 3.5. If A\(\subseteq\)B is an integral extension, then KdimB=KdimA.

MSC:

13C15 Dimension theory, depth, related commutative rings (catenary, etc.)
03F65 Other constructive mathematics
13A15 Ideals and multiplicative ideal theory in commutative rings
13E05 Commutative Noetherian rings and modules
Full Text: DOI

References:

[1] DOI: 10.1016/S0022-4049(02)00214-1 · Zbl 1073.13003 · doi:10.1016/S0022-4049(02)00214-1
[2] DOI: 10.1016/j.crma.2003.12.008 · Zbl 1039.13002 · doi:10.1016/j.crma.2003.12.008
[3] T. Coquand and H. Lombardi, Commutative Ring Theory and Applications, Lecture Notes in Pure and Applied Mathematics 231, eds. M. Fontana, S.E. Kabbaj and S. Wiegand (M. Dekker, 2002) pp. 477–499.
[4] DOI: 10.2307/30037606 · Zbl 1105.13301 · doi:10.2307/30037606
[5] DOI: 10.1007/s00229-004-0509-2 · Zbl 1059.13006 · doi:10.1007/s00229-004-0509-2
[6] T. Coquand, H. Lombardi and M.F. Roy, From Sets and Types to Analysis and Topology: Towards Practicable Foundations for Constructive Mathematics, eds. L. Crosilla and P. Schuster (Oxford University Press, 2005) pp. 239–244.
[7] DOI: 10.1007/s00013-005-1295-0 · Zbl 1093.03035 · doi:10.1007/s00013-005-1295-0
[8] DOI: 10.1016/j.jalgebra.2005.07.034 · Zbl 1097.13011 · doi:10.1016/j.jalgebra.2005.07.034
[9] Español L., Rev. Acad. Cienc. Zaragoza 37 pp 5–
[10] DOI: 10.1016/0022-4049(86)90008-3 · Zbl 0601.18002 · doi:10.1016/0022-4049(86)90008-3
[11] Joyal A., Cahiers Topologie Geom. Differentielle. Categ. 16 pp 256–
[12] Heitmann R., Michigan Math. 31 pp 167–
[13] DOI: 10.1007/s002090100305 · Zbl 1095.13517 · doi:10.1007/s002090100305
[14] DOI: 10.1007/978-1-4419-8640-5 · Zbl 0725.03044 · doi:10.1007/978-1-4419-8640-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.