×

All 2-transitive groups have the EKR-module property. (English) Zbl 1448.05228

Summary: We prove that every 2-transitive group has a property called the EKR-module property. This property gives a characterization of the maximum intersecting sets of permutations in the group. Specifically, the characteristic vector of any maximum intersecting set in a 2-transitive group is a linear combination of the characteristic vectors of the stabilizers of points and their cosets. We also consider when the derangement graph of a 2-transitive group is connected and when a maximum intersecting set is a subgroup or a coset of a subgroup.

MSC:

05E18 Group actions on combinatorial structures
05D05 Extremal set theory
05C69 Vertex subsets with special properties (dominating sets, independent sets, cliques, etc.)
05A05 Permutations, words, matrices
20B30 Symmetric groups

Software:

OEIS

References:

[1] Ahlswede, Rudolf; Khachatrian, Levon H., The complete intersection theorem for systems of finite sets, Eur. J. Comb., 18, 2, 125-136 (1997) · Zbl 0869.05066
[2] Ahmadi, Bahman; Meagher, Karen, The Erdős-Ko-Rado property for some 2-transitive groups, Ann. Comb., 19, 4, 621-640 (2015) · Zbl 1326.05068
[3] Ahmadi, Bahman; Meagher, Karen, The Erdős-Ko-Rado property for some permutation groups, Australas. J. Comb., 61, 23-41 (2015) · Zbl 1309.05175
[4] Babai, L., Spectra of Cayley graphs, J. Comb. Theory, Ser. B, 2, 180-189 (1979) · Zbl 0338.05110
[5] Borg, Peter, Intersecting systems of signed sets, Electron. J. Comb., 14, 1 (2007), Research Paper 41 · Zbl 1122.05091
[6] Burnside, W., Theory of Groups of Finite Order (1897), Cambridge University Press: Cambridge University Press Cambridge · JFM 28.0118.03
[7] Cameron, P. J., Permutation Groups, London Mathematical Society Student Texts, vol. 45 (1999) · Zbl 0922.20003
[8] Cartan, Henri; Eilenberg, Samuel, Homological Algebra (1956), Princeton University Press: Princeton University Press Princeton · Zbl 0075.24305
[9] Dixon, J. D.; Mortimer, B., Permutation Groups, Graduate Texts in Mathematics (1996), Springer: Springer New York · Zbl 0951.20001
[10] Erdős, P.; Ko, Chao; Rado, R., Intersection theorems for systems of finite sets, Q. J. Math. Oxford Ser. (2), 12, 313-320 (1961) · Zbl 0100.01902
[11] Foulser, David, The flag-transitive collineation groups of the finite Desarguesian affine planes, Can. J. Math., 16, 443-472 (1964) · Zbl 0119.16203
[12] Frankl, P.; Wilson, R. M., The Erdős-Ko-Rado theorem for vector spaces, J. Comb. Theory, Ser. A, 43, 2, 228-236 (1986) · Zbl 0609.05055
[13] Godsil, C.; Meagher, K., A new proof of the Erdős-Ko-Rado theorem for intersecting families of permutations, Eur. J. Comb., 30, 404-414 (2009) · Zbl 1177.05010
[14] Godsil, C.; Meagher, K., Erdős-Ko-Rado Theorems: Algebraic Approaches (2015), Cambridge University Press · Zbl 1343.05002
[15] Godsil, Chris; Meagher, Karen, An algebraic proof of the Erdős-Ko-Rado theorem for intersecting families of perfect matchings, Ars Math. Contemp., 12, 2, 205-217 (2017) · Zbl 1370.05102
[16] Godsil, Chris; Royle, Gordon, Algebraic Graph Theory, Graduate Texts in Mathematics, vol. 207 (2001), Springer-Verlag: Springer-Verlag New York · Zbl 0968.05002
[17] Guralnick, R.; Tiep, P. H., Cross characteristic representations of even characteristic symplectic groups, Trans. Am. Math. Soc., 356, 4969-5023 (2004) · Zbl 1062.20013
[18] Isaacs, I. Martin, Character Theory of Finite Groups (2006), AMS Chelsea Publishing: AMS Chelsea Publishing Providence, RI · Zbl 1119.20005
[19] Ku, Cheng Yeaw; Renshaw, David, Erdős-Ko-Rado theorems for permutations and set partitions, J. Comb. Theory, Ser. A, 115, 6, 1008-1020 (2008) · Zbl 1154.05056
[20] Long, Ling; Plaza, Rafael; Sin, Peter; Xiang, Qing, Characterization of intersecting families of maximum size in \(P S L(2, q)\), J. Comb. Theory, Ser. A, 157, 461-499 (2018) · Zbl 1385.05070
[21] Meagher, K.; Spiga, P., An Erdős-Ko-Rado theorem for the derangement graph of \(\operatorname{PGL}(2, q)\) acting on the projective line, J. Comb. Theory, Ser. A, 118, 532-544 (2011) · Zbl 1227.05163
[22] Meagher, K.; Spiga, P., An Erdős-Ko-Rado theorem for the derangement graph of \(\operatorname{PGL}_3(q)\) acting on the projective plane, SIAM J. Discrete Math., 28, 918-941 (2011) · Zbl 1298.05175
[23] Meagher, Karen, An Erdős-Ko-Rado theorem for the group \(\operatorname{PSU}(3, q)\), Des. Codes Cryptogr., 87, 4, 717-744 (2019) · Zbl 1407.05232
[24] Meagher, Karen; Spiga, Pablo; Tiep, Pham Huu, An Erdős-Ko-Rado theorem for finite 2-transitive groups, Eur. J. Comb., 55, 100-118 (2016) · Zbl 1333.05306
[25] Moon, Aeryung, An analogue of the Erdős-Ko-Rado theorem for the Hamming schemes \(H(n, q)\), J. Comb. Theory, Ser. A, 32, 3, 386-390 (1982) · Zbl 0483.05002
[26] Persi, Diaconis; Shahshahani, Mehrdad, Generating a random permutation with random transpositions, Z. Wahrscheinlichkeitstheor. Verw. Geb., 57, 2, 159-179 (1981) · Zbl 0485.60006
[27] Simpson, W. A.; Frame, J. S., The character tables for \(\operatorname{SL}(3, q), \operatorname{SU}(3, q^2), \operatorname{PSL}(3, q), \operatorname{PSU}(3, q^2)\), Can. J. Math., 25, 486-494 (1973) · Zbl 0264.20010
[28] Spiga, Pablo, The Erdős-Ko-Rado theorem for the derangement graph of the projective general linear group acting on the projective space, J. Comb. Theory, Ser. A, 166, 59-90 (2019) · Zbl 1416.05276
[29] The on-line encyclopedia of integer sequences (2019)
[30] Wilson, Richard M., The exact bound in the Erdős-Ko-Rado theorem, Combinatorica, 4, 2-3, 247-257 (1984) · Zbl 0556.05039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.