×

Embedding theorems for Sobolev and Hardy-Sobolev spaces and estimates of Fourier transforms. (English) Zbl 1418.46016

Ann. Mat. Pura Appl. (4) 198, No. 2, 615-637 (2019); correction ibid. 201, No. 3, 1525-1530 (2022).
Summary: We prove embeddings of Sobolev and Hardy-Sobolev spaces into Besov spaces built upon certain mixed norms. This gives an improvement of the known embeddings into usual Besov spaces. Applying these results, we obtain Oberlin-type estimates of Fourier transforms for functions in Sobolev spaces \(W_1^1(\mathbb {R}^n)\).

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
26D10 Inequalities involving derivatives and differential and integral operators
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)

References:

[1] Alvino, A.: Sulla diseguaglianza di Sobolev in spazi di Lorentz. Bull. Un. Mat. Ital. A (5) 14(1), 148-156 (1977) · Zbl 0352.46020
[2] Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, Boston (1988) · Zbl 0647.46057
[3] Blozinski, A.P.: Multivariate rearrangements and Banach function spaces with mixed norms. Trans. Am. Math. Soc. 263(1), 149-167 (1981) · Zbl 0462.46020 · doi:10.1090/S0002-9947-1981-0590417-X
[4] Bourgain, J.: A Hardy Inequality in Sobolev Spaces. Vrije University, Brussels (1981)
[5] Chong, K.M., Rice, N.M.: Equimeasurable Rearrangements of Functions, Queen’s Papers in Pure and Applied Mathematics, issue 28. Queen’s University, Kingston (1971) · Zbl 0275.46024
[6] Cwikel, M.: On \[(L^{po}(A_o),\, L^{p_1}(A_1))_{\theta },\,_q\](Lpo(Ao),Lp1(A1))θ,q. Proc. Am. Math. Soc. 44, 286-292 (1974) · Zbl 0288.46031
[7] Fefferman, C., Stein, E.M.: \[H^p\] Hp spaces of several variables. Acta Math. 129, 137-193 (1972) · Zbl 0257.46078 · doi:10.1007/BF02392215
[8] García-Cuerva, J., Rubio de Francia, J.L.: Weighted Norm Inequalities and Related Topics, North Holland Mathematical Studies, vol. 116. North Holland, Amsterdam (1985) · Zbl 0578.46046
[9] Grafakos, L.: Classical and Modern Fourier Analysis. Pearson Education, London (2004) · Zbl 1148.42001
[10] Herz, C.S.: Lipschitz spaces and Bernstein’s theorem on absolutely convergent Fourier transforms. J. Math. Mech. 18, 283-324 (1968) · Zbl 0177.15701
[11] Kolyada, V.I.: On relations between moduli of continuity in different metrics. Trudy Mat. Inst. Steklov 181, 117-136 (1988) (in Russian). English transl.: Proc. Steklov Inst. Math. 4, 127-148 (1989) · Zbl 0716.41018
[12] Kolyada, V.I.: On embedding of Sobolev spaces. Mat. Zametki 54(3), 48-71 (1993). English transl.: Math. Notes 54(3), 908-922 (1993) · Zbl 0821.46043
[13] Kolyada, V.I.: Estimates of Fourier transforms in Sobolev spaces. Studia Math. 125, 67-74 (1997) · Zbl 0896.42008 · doi:10.4064/sm-125-1-67-74
[14] Kolyada, V.I.: Rearrangement of functions and embedding of anisotropic spaces of Sobolev type. East J. Approx. 4(2), 111-199 (1998) · Zbl 0917.46019
[15] Kolyada, V.I.: Embeddings of fractional Sobolev spaces and estimates of Fourier transforms. Mat. Sb. 192(7), 51-72 (2001). English transl.: Sb. Math. 192(7), 979-1000 (2001) · Zbl 1031.46040
[16] Kolyada, V.I.: On embedding theorems. In: Nonlinear Analysis, Function Spaces and Applications, vol. 8 (Proceedings of the Spring School held in Prague, 2006), Prague, pp. 35-94 (2007) · Zbl 1289.46051
[17] Kolyada, V.I., Lerner, A.K.: On limiting embeddings of Besov spaces. Studia Math. 171(1), 1-13 (2005) · Zbl 1090.46026 · doi:10.4064/sm171-1-1
[18] Lieb, E.H., Loss, M.: Analysis, 2nd edn., Graduate Studies in Mathematics, vol. 14. AMS, Providence (2001) · Zbl 0966.26002
[19] Nikol’skiĭ, S.M.: Approximation of Functions of Several Variables and Embedding Theorems. Springer, Berlin (1975) · Zbl 0307.46024 · doi:10.1007/978-3-642-65711-5
[20] Oberlin, D.: A multiplier theorem for \[H^1({\mathbb{R}}^n)\] H1(Rn). Proc. Am. Math. Soc. 73(1), 83-87 (1979) · Zbl 0398.42011
[21] O’Neil, R.: Convolution operators and \[L(p, q)\] L(p,q) spaces. Duke Math. J. 30, 129-142 (1963) · Zbl 0178.47701 · doi:10.1215/S0012-7094-63-03015-1
[22] Oswald, P.: On Coefficient Properties of Power Series, Constructive Function Theory 81 (Varna, 1981), pp. 468-474. Bulgarian Academy of Sciences, Sofia (1983) · Zbl 0557.30030
[23] Pełczyński, A., Wojciechowski, M.: Molecular decompositions and embedding theorems for vector-valued Sobolev spaces with gradient norm. Studia Math. 107(1), 61-100 (1993) · Zbl 0811.46028
[24] Peetre, J.: Espaces d’interpolation et espaces de Soboleff. Ann. Inst. Fourier (Grenoble) 16, 279-317 (1966) · Zbl 0151.17903 · doi:10.5802/aif.232
[25] Poornima, S.: An embedding theorem for the Sobolev space \[W^{1,1}\] W1,1. Bull. Sci. Math. 107(2), 253-259 (1983) · Zbl 0529.46025
[26] Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton (1970) · Zbl 0207.13501
[27] Storozhenko, E.A.: Necessary and sufficient conditions for the embedding of certain classes of functions. Izv. Akad. Nauk SSSR Ser. Mat. 37, 386-398 (in Russian). English transl.: Math USSR-Izv. 7(1973), 388-400 (1973) · Zbl 0281.46028
[28] Ul’yanov, P.L.: Embedding of certain function classes \[H_p^\omega\] Hpω. Izv. Akad. Nauk SSSR Ser. Mat. 32, 649-686 (1968). English transl.: Math. USSR Izv. 2, 601-637 (1968) · Zbl 0181.13404
[29] Yatsenko, A.A.: Iterative rearrangements of functions and the Lorentz spaces. Izv. VUZ Mat. 5, 73-77 (1998). English transl.: Russ. Math. (Iz. VUZ) 42(5), 71-75 (1998) · Zbl 1497.46038
[30] Ziemer, W.P.: Weakly Differentiable Functions. Springer, New York (1989) · Zbl 0692.46022 · doi:10.1007/978-1-4612-1015-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.