×

Combinatorial properties of poly-Bernoulli relatives. (English) Zbl 1412.11034

Summary: In this note we augment the poly-Bernoulli family with two new combinatorial objects. We derive formulas for the relatives of the poly-Bernoulli numbers using the appropriate variations of combinatorial interpretations. Our goal is to show connections between the different areas where poly-Bernoulli numbers and their relatives appear and give examples of how the combinatorial methods can be used for deriving formulas between these integer arrays.

MSC:

11B68 Bernoulli and Euler numbers and polynomials
05A19 Combinatorial identities, bijective combinatorics

Software:

OEIS; GitHub

References:

[1] S. Akiyama and Y. Tanigawa, Multiple zeta values at non-positive integers, Ramanujan J. 5 (4) (2001), 227-351. · Zbl 1002.11069
[2] R. Andrade, E. Lundberg and B. Nagle, Asymptotics of the extremal excedance set statistic, European J. Combin. 46 (2015), 75-88. · Zbl 1307.05003
[3] T. Arakawa, T. Ibukiyama and M. Kaneko, Bernoulli numbers and zeta functions, Springer Japan, 2014. · Zbl 1312.11015
[4] T. Arakawa and M. Kaneko, Multiple zeta values, poly-Bernoulli numbers and related zeta functions, Nagoya Math. J. 153 (1999), 189-209. · Zbl 0932.11055
[5] J. C. Aval, A. Boussicault, M. Bouval and M. Silimbani, Combinatorics of non-ambiguous trees, Adv. in Appl. Math., 56 (2014), 78-108. · Zbl 1300.05127
[6] B. B´enyi, P. Hajnal, Combinatorics of poly-Bernoulli numbers, Studia Sci. Math. Hungarica 52(4) (2015), 537-558. · Zbl 1374.05002
[7] B. B´enyi, Advances in Bijective Combinatorics, PhD thesis, (2014), available at http://www.math.u-szeged.hu/phd/dreposit/phdtheses/benyi-beata-d.pdf.
[8] C. R. Brewbaker, A combinatorial interpretation of the poly-Bernoulli numbers and two Fermat analogues, Integers 8 (2008), A02. · Zbl 1165.11022
[9] C. R. Brewbaker, personal communications, https://github.com/chadbrewbaker/polyBernoulli, retrieved Feb 2016. INTEGERS: 17 (2017)25
[10] J. Borwein and R. Girgensohn, Evaluations of binomial series, Aequationes Math. 70 (2005), 25-36. · Zbl 1078.05003
[11] A. Burstein and N. Eriksen, Combinatorial properties of permutation tableaux, in Permutation Patterns, LMS Lecture Note Series No. 376, Cambridge University Press, 2010. pp. 171-192. · Zbl 1217.05009
[12] J. Burns, Bijective proofs for “enumerative properties of Ferrers graphs”, arXivmath/0312282v1 (2003).
[13] P. J. Cameron, C. A. Glass and R. U. Schumacher, Acyclic orientations and poly-Bernoulli numbers, arXiv 1412.3685v1 (2014)
[14] K. Chen, Algorithms for Bernoulli and Euler numbers, J. Integer Seq. 4 (2001), A01.1.6 · Zbl 0973.11021
[15] E. Clark and R. Ehrenborg, Explicit expressions for extremal excedance set statistics, European J. Combin. 31 (2010), 270-279. · Zbl 1180.05001
[16] S. Corteel and L. K. William, Tableaux combinatorics for the asymmetric exclusion process, Adv. Appl. Math. 39(3) (2007), 293-310. · Zbl 1129.05057
[17] J. Cooper, E. Lundberg and B. Nagle, Generalized pattern frequency in large enumerations, Electron. J. Combin. 20(1) (2013), P28. · Zbl 1267.05029
[18] R. Ehrenborg and E. Steingrimsson, The excedance set of a permutation, Adv. Appl. Math. 24 (2000), 284-299. · Zbl 0957.05006
[19] R. Ehrenborg and S. van Willigenburg, Enumerative properties of Ferrers graphs, Discrete Comput. Geom. 32(4) (2004) 481-492. · Zbl 1055.05151
[20] M. He, J.I. Munro and S.S. Rao, A categorization theorem on suffix arrays with applications to space efficient text indexes, Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA) (2005) 23-32. · Zbl 1297.68064
[21] D. Gebhard and B. Sagan, Sinks in acyclic orientations of graphs, J. Combin. Theorie Ser. B 80 (2000), 130-146. · Zbl 1023.05069
[22] C. Greene and T. Zaslavsky, On the interpretation of Whitney number trough arrangements of hyperplanes, zonotopes, non-radon partitions, and orientations of graphs, Trans. Amer. Math. Soc. 280 (1983), 97-126. · Zbl 0539.05024
[23] T. Hubai, The Chromatic Polynomial, MS thesis, 2009.
[24] M. Kaneko, Poly-Bernoulli numbers, J. Th´eor. Nombres Bordeaux 9 (1997), 221-228. · Zbl 0887.11011
[25] M. Kaneko, The Akiyama-Tanigawa algorithm for Poly-Bernoulli numbers, J. Integer Seq. , 3 (2000), A00.2.9 · Zbl 0982.11009
[26] M. Kaneko, Poly-Bernoulli numbers and related zeta functions, in Algebraic and Analytic Aspects of Zeta Functions and L-functions (Ed. by G. Bhowmik, K. Matsumoto and H. Tsumura), MSJ Memoir 21 (2010), 73-85. · Zbl 1269.11080
[27] H. K. Kim, D. S. Krotov and J. Y. Lee, Matrices uniquely determined by their lonesum, Linear Algebra Appl. 438 (2013), 3107-3123. · Zbl 1276.11031
[28] S. Kitaev, T. Mansour and A. Vella, Pattern avoidance in matrices, J. Integer Seq. 8 (2005), A05.2.2 · Zbl 1064.05015
[29] S. Launois, Combinatorics of H-primes in quantum matrices, J. Algebra 309(1) (2007) 139– 167. INTEGERS: 17 (2017)26 · Zbl 1172.05051
[30] L. Lov´asz, Combinatorial Problems and Excercises, North-Holland Publishing Co, Amsterdam, 1993. · Zbl 0785.05001
[31] A. Marcus and G. Tardos, Excluded permutation matrices and the Stanley-Wilf conjecture, J. Combin. Theory Ser. A 107 (2004), 153-160. · Zbl 1051.05004
[32] L. Lov´asz, K. Vesztergombi, Restricted permutations and Stirling numbers, in Colloquia Mathematica Societatis J´anos Bolyai, vol. 18. Combinatorics, Keszthely, (1976), 731-738. · Zbl 0404.05003
[33] N.J.A. Sloane, The on-line encyclopedia of integer sequences, URL http://oeis.org · Zbl 1044.11108
[34] A.Postnikov,Totalpositivity,Grassmannians,networks, http://math.mit.edu/˜apost/papers.html
[35] H.J. Ryser, Combinatorial properties of matrices of zeros and ones, Canad. J. Math. 9 (1957), 371-377. · Zbl 0079.01102
[36] J. Sj¨ostrand, Bruhat intervals as rooks on skew Ferrers boards, J. Combin. Theory Ser. A 114 (7) (2007), 1182-1198. · Zbl 1124.05006
[37] R. Stanley, Acyclic orientations of graphs, Discrete Math. 5 (1973), 171-178. · Zbl 0258.05113
[38] R. Stanley, Enumerative Combinatorics Vol. II., Cambridge University Press, Cambridge, 1999. · Zbl 0928.05001
[39] J.R.Swenson,Thechromaticpolynomialofacompletebipartitegraph, Amer. Math. Monthly 80 (1973), 797-798. · Zbl 0271.05109
[40] K. Vesztergombi, Permutations with restriction of middle strength, Studia Sci. Math. Hungarica 9 (1974) 181-185. · Zbl 0374.05004
[41] X.Viennot,Alternativetableaux,permutationsandpartiallyasymmetricexclusionprocess,IsaacNewtonInstitute,2008,http://wwwold.newton.ac.uk/webseminars/pg+ws/2008/csm/csmw04/0423/viennot/.
[42] T. Yun, Diagrams of Affine
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.