×

On poly-Euler numbers. (English) Zbl 1403.11016

Summary: Poly-Euler numbers are introduced as a generalization of the Euler numbers in a manner similar to the introduction of the poly-Bernoulli numbers. In this paper, some number-theoretic properties of poly-Euler numbers, for example, explicit formulas, a Clausen-von Staudt type formula, congruence relations and duality formulas, are given together with their combinatorial properties.

MSC:

11B68 Bernoulli and Euler numbers and polynomials
Full Text: DOI

References:

[1] T.Arakawa, T.Ibukiyama and M.Kaneko, Bernoulli Numbers and Zeta Functions (Makino Shoten Ltd, Tokyo, Japan, 2001), (in Japanese). · Zbl 1312.11015
[2] T.Arakawa and M.Kaneko, ‘Multiple zeta values, poly-Bernoulli numbers, and related zeta functions’, Nagoya Math. J.153 (1999), 189-209.10.1017/S0027763000006954 · Zbl 0932.11055 · doi:10.1017/S0027763000006954
[3] T.Arakawa and M.Kaneko, ‘On poly-Bernoulli numbers’, Comment. Math. Univ. St. Pauli48 (1999), 159-167. · Zbl 0994.11009
[4] C.Brewbaker, ‘Lonesum <![CDATA \([(0,1)]]\)>-matrices and poly-Bernoulli numbers of negative index’, Master’s thesis, Iowa State University, 2005.
[5] R. H.Hardin, Sequence number A081200 in On-line Encyclopedia of Integer Sequences, http://oeis.org/A081200.
[6] M.Kaneko, ‘Poly-Bernoulli numbers’, J. Théor. Nombres Bordeaux9 (1997), 199-206.10.5802/jtnb.197 · Zbl 0887.11011 · doi:10.5802/jtnb.197
[7] N.Katz, Sequence number A003462 in On-line Encyclopedia of Integer Sequences, http://oeis.org/A003462.
[8] S. K.Lando, Lectures on Generating Functions, Student Mathematical Library, 27 (American Mathematical Society, 2003), 150 pages.10.1090/stml/023 · Zbl 1032.05001 · doi:10.1090/stml/023
[9] S.Launois, ‘Rank t ℋ-primes in quantum matrices’, Comm. Algebra33 (2005), 837-854.10.1081/AGB-200051150 · Zbl 1073.16037 · doi:10.1081/AGB-200051150
[10] Y.Ohno and Y.Sasaki, ‘On the parity of poly-Euler numbers’, RIMS Kôkyûroku BessatsuB32 (2012), 271-278. · Zbl 1334.11014
[11] Y.Ohno and Y.Sasaki, ‘Periodicity on poly-Euler numbers and Vandiver type congruence for Euler numbers’, RIMS Kôkyûroku BessatsuB44 (2013), 205-212. · Zbl 1361.11013
[12] R.Sánchez-Peregrino, ‘The Lucas congruence for Stirling numbers of the second kind’, Acta Arith.94 (2000), 41-52. · Zbl 0947.11012
[13] Y.Sasaki, ‘On generalized poly-Bernoulli numbers and related L-functions’, J. Number Theory132 (2012), 156-170.10.1016/j.jnt.2011.07.007 · Zbl 1268.11135 · doi:10.1016/j.jnt.2011.07.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.