×

Combinatorial properties of symmetric polynomials from integrable vertex models in finite lattice. (English) Zbl 1375.81131

Summary: We introduce and study several combinatorial properties of a class of symmetric polynomials from the point of view of integrable vertex models in a finite lattice. We introduce the \(L\)-operator related to the \(\operatorname{U}_q(\operatorname{sl}_{2})\; R\)-matrix and construct the wavefunctions and their duals. We prove the exact correspondence between the wavefunctions and symmetric polynomials which is a quantum group deformation of the Grothendieck polynomials. This is proved by combining the matrix product method and an analysis on the domain wall boundary partition functions. As applications of the correspondence between the wavefunctions and symmetric polynomials, we derive several properties of the symmetric polynomials such as the determinant pairing formulas and the branching formulas by analyzing the domain wall boundary partition functions and the matrix elements of the \(B\)-operators.{
©2017 American Institute of Physics}

MSC:

81R12 Groups and algebras in quantum theory and relations with integrable systems
81Q35 Quantum mechanics on special spaces: manifolds, fractals, graphs, lattices
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
17B37 Quantum groups (quantized enveloping algebras) and related deformations
16T25 Yang-Baxter equations
52B12 Special polytopes (linear programming, centrally symmetric, etc.)

References:

[1] Bethe, H., Zur theorie der metalle: I. Eigenwerte und eigenfunktionen der linearen atomkette, Z. Phys., 71, 205 (1931) · JFM 57.1587.01 · doi:10.1007/bf01341708
[2] Baxter, R. J., Exactly Solved Models in Statistical Mechanics (1982) · Zbl 0538.60093
[3] Drinfeld, V., Hopf algebras and the quantum Yang-Baxter equation, Sov. Math.-Dokl., 32, 254 (1985) · Zbl 0588.17015
[4] Jimbo, M., A q-difference analog of U(g) and the Yang-Baxter equation, Lett. Math. Phys., 10, 63 (1985) · Zbl 0587.17004 · doi:10.1007/bf00704588
[5] Faddeev, L. D.; Sklyanin, E. K.; Takhtajan, L. A., Quantum inverse problem method. I, Theor. Math. Phys., 40, 688 (1979) · Zbl 1138.37331 · doi:10.1007/bf01018718
[6] Korepin, V. E.; Bogoliubov, N. M.; Izergin, A. G., Quantum Inverse Scattering Method and Correlation Functions (1993) · Zbl 0787.47006
[7] Motegi, K.; Sakai, K., Vertex models, TASEP and Grothendieck polynomials, J. Phys. A: Math. Theor., 46, 355201 (2013) · Zbl 1278.82042 · doi:10.1088/1751-8113/46/35/355201
[8] Motegi, K.; Sakai, K., K-theoretic boson-fermion correspondence and melting crystals, J. Phys. A: Math. Theor., 47, 445202 (2014) · Zbl 1310.82049 · doi:10.1088/1751-8113/47/44/445202
[9] Lascoux, A.; Schützenberger, M., Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux, C. R. Acad. Sci. Parix Sér. I Math., 295, 629 (1982) · Zbl 0542.14030
[10] Fomin, S.; Kirillov, A. N., Grothendieck polynomials and the Yang-Baxter equation, 183-190 (1994)
[11] Buch, A. S., A Littlewood-Richardson rule for the K-theory of Grassmannians, Acta. Math., 189, 37 (2002) · Zbl 1090.14015 · doi:10.1007/bf02392644
[12] Ikeda, T.; Naruse, H., K-theoretic analogues of factorial Schur P- and Q-functions, Adv. Math., 243, 22 (2013) · Zbl 1278.05240 · doi:10.1016/j.aim.2013.04.014
[13] Ikeda, T.; Shimazaki, T., A proof of K-theoretic Littlewood-Richardson rules by Bender-Knuth-type involutions, Math. Res. Lett., 21, 333 (2014) · Zbl 1301.05358 · doi:10.4310/mrl.2014.v21.n2.a10
[14] McNamara, P. J., Factorial Grothendieck polynomials, Electron. J. Comb., 13, 71 (2006) · Zbl 1099.05078
[15] Kirillov, A. N., Notes on Schubert, Grothendieck and key polynomials, SIGMA, 12, 034 (2016) · Zbl 1334.05176 · doi:10.3842/sigma.2016.034
[16] Motegi, K. and Sakai, K., “Quantum integrable combinatorics of Schur polynomials,” e-print . · Zbl 1278.82042
[17] Brubaker, B.; Bump, D.; Friedberg, S., Schur polynomials and the Yang-Baxter equation, Commun. Math. Phys., 308, 281 (2011) · Zbl 1232.05234 · doi:10.1007/s00220-011-1345-3
[18] Bump, D.; McNamara, P.; Nakasuji, M., Factorial Schur functions and the Yang-Baxter equation, Comm. Math. Univ. St. Pauli, 63, 23 (2014) · Zbl 1312.05140
[19] Motegi, K., Dual wavefunction of the Felderhof model, Lett. Math. Phys., 107, 1235 (2017) · Zbl 1370.05215 · doi:10.1007/s11005-017-0942-2
[20] Bogoliubov, N. M., Boxed plane partitions as an exactly solvable boson model, J. Phys. A, 38, 9415 (2005) · Zbl 1087.82007 · doi:10.1088/0305-4470/38/43/002
[21] Shigechi, K.; Uchiyama, M., Boxed skew plane partition and integrable phase model, J. Phys. A, 38, 10287 (2005) · Zbl 1085.82001 · doi:10.1088/0305-4470/38/48/003
[22] Tsilevich, N. V., Quantum inverse scattering method for the q-boson model and symmetric functions, Funct. Anal. Appl., 40, 53 (2006) · Zbl 1118.81041 · doi:10.1007/s10688-006-0032-1
[23] Korff, C.; Stroppel, C., The sl(n)-WZNW fusion ring: A combinatorial construction and a realisation as quotient of quantum cohomology, Adv. Math., 225, 200 (2010) · Zbl 1230.17010 · doi:10.1016/j.aim.2010.02.021
[24] Borodin, A., On a family of symmetric rational functions, Adv. Math., 306, 973 (2017) · Zbl 1355.05250 · doi:10.1016/j.aim.2016.10.040
[25] Borodin, A.; Petrov, L., Higher spin six vertex model and symmetric rational functions, Selecta Math. (2016) · Zbl 1405.60141 · doi:10.1007/s00029-016-0301-7
[26] Borodin, A. and Petrov, L., “Lectures on integrable probability: Stochastic vertex models and symmetric functions,” e-print . · Zbl 1397.82010
[27] Gorbounov, V. and Korff, C., “Equivariant quantum cohomology and Yang-Baxter algebras,” e-print . · Zbl 1386.14181
[28] Gorbounov, V.; Korff, C., Quantum integrability and generalised quantum Schubert calculus, Adv. Math., 313, 282 (2017) · Zbl 1386.14181 · doi:10.1016/j.aim.2017.03.030
[29] Betea, D.; Wheeler, M.; Zinn-Justin, P., Refined Cauchy/Littlewood identities and six-vertex model partition functions: II. Proofs and new conjectures, J. Alg. Comb., 42, 555 (2015) · Zbl 1319.05136 · doi:10.1007/s10801-015-0592-3
[30] Betea, D.; Wheeler, M., Refined Cauchy and Littlewood identities, plane partitions and symmetry classes of alternating sign matrices, J. Comb. Theory Ser. A, 137, 126 (2016) · Zbl 1325.05179 · doi:10.1016/j.jcta.2015.08.007
[31] Wheeler, M.; Zinn-Justin, P., Refined Cauchy/Littlewood identities and six-vertex model partition functions: III. Deformed bosons, Adv. Math., 299, 543 (2016) · Zbl 1341.05249 · doi:10.1016/j.aim.2016.05.010
[32] Duval, A.; Pasquier, V., q-bosons, Toda lattice, Pieri rules and Baxter q-operator, J. Phys. A: Math. Theor., 49, 154006 (2016) · Zbl 1351.37257 · doi:10.1088/1751-8113/49/15/154006
[33] Motegi, K., Sakai, K., and Watanabe, S., “Partition functions of integrable lattice models and combinatorics of symmetric polynomials,” e-print .
[34] van Diejen, J. F.; Emsiz, E., Orthogonality of Bethe ansatz eigenfunctions for the Laplacian on a hyperoctahedral Weyl alcove, Commun. Math. Phys., 350, 1017 (2016) · Zbl 1360.82029 · doi:10.1007/s00220-016-2719-3
[35] Ivanov, D., Symplectic ice, Multiple Dirichlet Series, L-Functions and Automorphic Forms, 205-222 (2012) · Zbl 1264.11042
[36] Brubaker, B.; Bump, D.; Chinta, G.; Gunnells, P. E., Metaplectic Whittaker functions and crystals of type B, Multiple Dirichlet Series, L-Functions and Automorphic Forms, 93-118 (2012) · Zbl 1370.11061
[37] Tabony, S. J., Deformations of characters, metaplectic Whittaker functions and the Yang-Baxter equation (2011)
[38] Hamel, A. M.; King, R. C., Tokuyama’s identity for factorial Schur P and Q functions, Electron. J. Comb., 22, 2 (2015) · Zbl 1319.05137
[39] Takeyama, Y., A discrete analogue of periodic delta Bose gas and affine Hecke algebra, Funckeilaj Ekvacioj, 57, 107 (2014) · Zbl 1310.39004 · doi:10.1619/fesi.57.107
[40] Takeyama, Y., A deformation of affine Hecke algebra and integrable stochastic particle system, J. Phys. A: Math. Theor., 47, 465203 (2014) · Zbl 1310.81083 · doi:10.1088/1751-8113/47/46/465203
[41] Golinelli, O.; Mallick, K., Derivation of a matrix product representation for the asymmetric exclusion process from algebraic Bethe ansatz, J. Phys. A: Math. Gen., 39, 10647 (2006) · Zbl 1116.82017 · doi:10.1088/0305-4470/39/34/004
[42] Katsura, H.; Maruyama, I., Derivation of matrix product ansatz for the Heisenberg chain from algebraic Bethe ansatz, J. Phys. A: Math. Theor., 43, 175003 (2010) · Zbl 1195.82061 · doi:10.1088/1751-8113/43/17/175003
[43] Korepin, V. E., Calculation of norms of Bethe wave functions, Commun. Math. Phys., 86, 391 (1982) · Zbl 0531.60096 · doi:10.1007/bf01212176
[44] Izergin, A., Partition function of the six-vertex model in a finite volume, Sov. Phys. Dokl., 32, 878 (1987) · Zbl 0875.82015
[45] Pakuliak, S.; Rubtsov, V.; Silantyev, A., SOS model partition function and the elliptic weight functions, J. Phys. A: Math. Theor., 41, 295204 (2008) · Zbl 1143.81016 · doi:10.1088/1751-8113/41/29/295204
[46] Izergin, A. G.; Coker, D. A.; Korepin, V. E., Determinant formula for the six-vertex model, J. Phys. A, 25, 4315 (1992) · Zbl 0764.60114 · doi:10.1088/0305-4470/25/16/010
[47] Bressoud, D., Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture (1999) · Zbl 0944.05001
[48] Kuperberg, G., Another proof of the alternating-sign matrix conjecture, Int. Math. Res. Not., 1996, 3, 139 · Zbl 0859.05027 · doi:10.1155/s1073792896000128
[49] Kuperberg, G., Symmetry classes of alternating-sign matrices under one roof, Ann. Math., 156, 835 (2002) · Zbl 1010.05014 · doi:10.2307/3597283
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.