×

Cyclic sieving of noncrossing partitions for complex reflection groups. (English) Zbl 1268.20041

From the introduction: We prove an instance of the cyclic sieving phenomenon, occurring in the context of noncrossing partitions for well-generated complex reflection groups.
Our goal is Theorem 1.1 below, whose terminology is explained briefly here, and more fully in the next section.
Let \(V=\mathbb C^n\) and let \(W\subset\text{GL}(V)\) be a finite irreducible complex reflection group, that is, \(W\) is generated by its set \(R\) of reflections. We will assume further that \(W\) is ‘well-generated’ in the sense that it can be generated by \(n\) of its reflections. Define the Coxeter number \(h:=d_n\) and the \(W\)-\(q\)-Catalan number \[ \text{Cat}(W,q):=\prod^n_{i=1}\frac{[h+d_i]_q}{[d_i]_q}, \] where \([n]_q:=1+q+q^2+\cdots+q^{n-1}=\tfrac{q^n-1}{q-1}\). Let \(c\) be a regular element of \(W\) in the sense of T. A. Springer [Invent. Math. 25, 159-198 (1974; Zbl 0287.20043)], of order \(h\); such a regular element of order \(h\) will exist because \(W\) is well-generated; see Subsection 2.3. In other words, \(c\) has an eigenvector \(v\in V\) fixed by none of the reflections, and whose \(c\)-eigenvalue \(\zeta_h\) is a primitive \(h\)-th root of unity.
Let \(\text{NC}(W):=\{w\in W:\ell_R(w)+\ell_R(w^{-1}c)=n\}\), where \(\ell_R\) is the absolute length function \(\ell_R(w):=\min\{\ell:w=r_1r_2\cdots r_\ell\) for some \(r_i\in R\}\). The initials “NC” in \(\text{NC}(W)\) are motivated by the special case where \(W\) is the Weyl group of type \(A_{n-1}\), and the set \(\text{NC}(W)\) bijects with the noncrossing partitions of \(\{1,2,\dots,n\}\); see Subsection 2.1 below.
The fact that \(R\) is stable under \(W\)-conjugacy implies that the cyclic group \(C:=\langle c\rangle\) acts on the set \(\text{NC}(W)\) by conjugation: \(w\in\text{NC}(W)\) implies \(cwc^{-1}\in\text{NC}(W)\).
Theorem 1.1. In the above setting, the triple \((X,X(q),C)\) given by \[ X=\text{NC}(W),\quad X(q)=\text{Cat}(W,q),\quad C=\langle c\rangle\cong\mathbb Z/h\mathbb Z, \] exhibits the cyclic sieving phenomenon defined by V. Reiner, D. Stanton, and D. White [J. Comb. Theory, Ser. A 108, No. 1, 17-50 (2004; Zbl 1052.05068)]: for any element \(c^i\) in \(C\), the subset \(X^{c^i}\) of elements in \(X\) fixed by \(c^i\) has cardinality \(|X^{c^i}|=[X(q)]_{q=\zeta^i_h}\).
After explaining a bit more of the background and definitions in Section 2, Theorem 1.1 is proven in Section 3. The (partly conjectural) interpretation of \(\text{Cat}(W,q)\) is discussed in Section 4, leading to speculation on more conceptual proofs of Theorem 1.1 in Section 5. Section 6 remarks on some conjectural variations.

MSC:

20F55 Reflection and Coxeter groups (group-theoretic aspects)
05A18 Partitions of sets
05E15 Combinatorial aspects of groups and algebras (MSC2010)
51F15 Reflection groups, reflection geometries

References:

[1] Armstrong, D.: Generalized noncrossing partitions and combinatorics of Coxeter groups. Mem. Amer. Math. Soc. 202, #949 (2009) · Zbl 1191.05095
[2] Armstrong, D.: Braid groups, clusters, and free probability: an outline from the AIM workshop. Available at www.aimath.org/WWN/braidgroups/braidgroups.pdf (2005)
[3] Athanasiadis, C.A.: On noncrossing and nonnesting partitions for classical reflection groups. Electron. J. Combin. 5, #R42 (1998) · Zbl 0898.05004
[4] Athanasiadis C.A.: On a refinement of the generalized Catalan numbers for Weyl groups. Trans. Amer. Math. Soc. 357(1), 179–196 (2005) · Zbl 1079.20057 · doi:10.1090/S0002-9947-04-03548-2
[5] Athanasiadis C.A., Reiner V.: Noncrossing partitions for the group D n . SIAM J. Discrete Math. 18(2), 397–417 (2004) · Zbl 1085.06001 · doi:10.1137/S0895480103432192
[6] Berenstein A., Burman Y.: Quasiharmonic polynomials for Coxeter groups and representations of Cherednik algebras. Trans. Amer. Math. Soc. 362(1), 229–260 (2010) · Zbl 1242.20047 · doi:10.1090/S0002-9947-09-04620-0
[7] Berest Y., Etingof P., Ginzburg V.: Finite-dimensional representations of rational Cherednik algebras. Int. Math. Res. Not. 2003(19), 1053–1088 (2003) · Zbl 1063.20003 · doi:10.1155/S1073792803210205
[8] Bessis D.: The dual braid monoid. Ann. Sci. Ecole Norm. Sup.(4) 36(5), 647–683 (2003) · Zbl 1064.20039
[9] Bessis, D.: Finite complex reflection arrangements are K({\(\pi\)}, 1). arXiv preprint $${{\(\backslash\)tt math.GT/0610777}}$$
[10] Bessis, D.: Garside categories, periodic loops and cyclic sets. arXiv preprint $${{\(\backslash\)tt math.GT/0610778}}$$
[11] Brady T., Watt C.: A partial order on the orthogonal group. Comm. Algebra 30(8), 3749–3754 (2002) · Zbl 1018.20040 · doi:10.1081/AGB-120005817
[12] Broer, A.: Lectures on decomposition classes. In: Broer, A. (ed.) Representation Theories and Algebraic Geometry (Montreal, PQ, 1997), pp. 39–83. Kluwer Acad. Publ., Dordrecht (1998) · Zbl 0940.17003
[13] Broué M., Malle G., Rouquier R.: Complex reflection groups, braid groups, Hecke algebras. J. Reine Angew. Math. 500, 127–190 (1998) · Zbl 0921.20046
[14] Chevalley C.: Invariants of finite groups generated by reflections. Amer. J. Math. 77, 778–782 (1955) · Zbl 0065.26103 · doi:10.2307/2372597
[15] Eu S.-P., Fu T.-S.: The cyclic sieving phenomenon for faces of generalized cluster complexes. Adv. Appl. Math. 40(3), 350–376 (2008) · Zbl 1147.05014 · doi:10.1016/j.aam.2007.01.005
[16] Fomin S., Reading N.: Generalized cluster complexes and Coxeter combinatorics. Int. Math. Res. Not. 2005(44), 2709–2757 (2005) · Zbl 1117.52017 · doi:10.1155/IMRN.2005.2709
[17] Fomin, S., Reading, N.: Root systems and generalized associahedra. In: Geometric Combinatorics, pp. 63–131. Amer. Math. Soc., Providence, RI (2007) · Zbl 1147.52005
[18] Fomin S., Zelevinsky A.: Y-systems and generalized associahedra. Ann. of Math. (2) 158(3), 977–1018 (2003) · Zbl 1057.52003 · doi:10.4007/annals.2003.158.977
[19] Fürlinger J., Hofbauer J.: q-Catalan numbers. J. Combin. Theory Ser. A 40(2), 248–264 (1985) · Zbl 0581.05006 · doi:10.1016/0097-3165(85)90089-5
[20] Griffeth, S.: Finite dimensional modules for rational Cherednik algebras. arXiv:math.RT/0612733. · Zbl 1227.05265
[21] Gordon I.: On the quotient ring by diagonal invariants. Invent. Math. 153(3), 503–518 (2003) · Zbl 1039.20019 · doi:10.1007/s00222-003-0296-5
[22] Haiman M.D.: Conjectures on the quotient ring by diagonal invariants. J. Algebraic Combin. 3(1), 17–76 (1994) · Zbl 0803.13010 · doi:10.1023/A:1022450120589
[23] Kreweras G.: Sur les partitions non croisées d’un cycle. Discrete Math. 1, 333–350 (1972) · Zbl 0231.05014 · doi:10.1016/0012-365X(72)90041-6
[24] Lehrer G.I., Michel J.: Invariant theory and eigenspaces for unitary reflection groups. C. R. Acad. Sci. Paris, Ser. I 336(10), 795–800 (2003) · Zbl 1056.13007 · doi:10.1016/S1631-073X(03)00192-4
[25] Lehrer G.I., Springer T.A.: Reflection subquotients of unitary reflection groups. Canad. J. Math. 51(6), 1175–1193 (1999) · Zbl 0958.51017 · doi:10.4153/CJM-1999-052-4
[26] Orlik P., Solomon L.: Unitary reflection groups and cohomology. Invent. Math. 59(1), 77–94 (1980) · Zbl 0452.20050 · doi:10.1007/BF01390316
[27] Panyushev D.I.: On orbits of antichains of positive roots. European J. Combin. 30(2), 586–594 (2009) · Zbl 1165.06001 · doi:10.1016/j.ejc.2008.03.009
[28] Reiner V.: Non-crossing partitions for classical reflection groups. Discrete Math. 177(1-3), 195–222 (1997) · Zbl 0892.06001 · doi:10.1016/S0012-365X(96)00365-2
[29] Reiner V., Stanton D., White D.: The cyclic sieving phenomenon. J. Combin. Theory Ser. A 108(1), 17–50 (2004) · Zbl 1052.05068 · doi:10.1016/j.jcta.2004.04.009
[30] Shephard G.C., Todd J.A.: Finite unitary reflection groups. Canad. J. Math. 6, 274–304 (1954) · Zbl 0055.14305 · doi:10.4153/CJM-1954-028-3
[31] Solomon L.: Invariants of finite reflection groups. Nagoya Math. J. 22, 57–64 (1963) · Zbl 0117.27104
[32] Sommers E.N.: B-stable ideals in the nilradical of a Borel subalgebra. Canad. Math. Bull. 48(3), 460–472 (2005) · Zbl 1139.17303 · doi:10.4153/CMB-2005-043-4
[33] Springer T.A.: Regular elements of finite reflection groups. Invent. Math. 25, 159–198 (1974) · Zbl 0287.20043 · doi:10.1007/BF01390173
[34] White, D.: personal communication. (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.