×

Yang-Mills theory over surfaces and the Atiyah-Segal theorem. (English) Zbl 1240.19005

As the main result of the article the author shows that Carlsson’s deformation \(K\)-theory groups \(K^{\mathrm{def}}_*(\pi_{1}(\Sigma))\) for the fundamental group \(\pi_{1}(\Sigma)\) of an aspherical compact surface \(\Sigma\) coincide with the ordinary \(K\)-theory groups \(K^{-*}(\Sigma)\) for \(*>0\). The groups \(K^{\mathrm{def}}_*(\Gamma)\) for a discrete group \(\Gamma\) have been defined by G. Carlsson [“Derived representation theory and the algebraic \(K\)-theory of fields,” J. Topol. 4, No. 3, 543–572 (2011; Zbl 1230.19001)]. By definition they are the homotopy groups of the group completion of the topological monoid given by the direct sum over the natural numbers \(n \geq 0\) of the homotopy orbit spaces \(\mathrm{Hom}(\Gamma, U(n))_{hU(n)}\), where the action of the unitary group \(U(n)\) on \(\mathrm{Hom}(\Gamma, U(n))\) is given by conjugation. The groups \(K^{\mathrm{def}}_*(\Gamma)\) may be seen as a deformed version of the representation ring of \(\Gamma\), and since \(\Sigma\) can be viewed as a model for the classifying space \(B\pi_{1}(\Sigma)\) the established isomorphisms can be regarded as a variation of the Atiyah-Segal completion theorem: namely in the following formal sense that they give a way to determine the \(K\)-theory of the classifying space of \(\Gamma\) from a suitable modification of the representation ring of \(\Gamma\).
As a simple consequence of the established isomorphisms one can now compute the deformed \(K\)-theory of \(\pi_{1}(\Sigma)\) for surfaces \(\Sigma\) as above. In particular one obtains that the deformation \(K\)-theory groups in the considered cases satisfy certain excision properties in positive dimensions. This supports a more general conjecture of Carlsson, which claims that there is a Mayer-Vietoris sequence in deformation \(K\)-theory for amalgamated products of groups which is exact in high degrees. Moreover, for a surface \(\Sigma\) as above the established isomorphism yields (using additional results from T. Lawson [Math. Proc. Camb. Philos. Soc. 146, No. 2, 379–393 (2009; Zbl 1163.19002)]) a complete determination of the homotopy type of the space \(\mathrm{Hom}(\pi_{1}(\Sigma),U)/U\), which can be identified with the stable moduli space of unitary flat connections over \(\Sigma\).
In order to prove the main result the author uses elements of infinite dimensional Morse theory. More precisely, let \(\mathcal{A}_{\mathrm{flat}}(n)\) denote a suitable Sobolev completion of the space of unitary flat connections on \(\Sigma\times \mathbb{C}^{n}\) for an arbitrary choice of a Riemannian structure on \(\Sigma\), and let \(\mathcal{G}(n)\) denote the corresponding gauge group. As a first result the author shows that there is a \(\pi_{1}(\Sigma)\)-equivariant homeomorphism from \(\mathcal{A}_{\mathrm{flat}}(n)/\mathcal{G}(n)\) to \(\mathrm{Hom}(\pi_{1}(\Sigma), U(n))\), so that he can use the quotients \(\mathcal{A}_{\mathrm{flat}}(n)/\mathcal{G}(n)\) for the definition of the deformed \(K\)-theory of \(\pi_{1}(\Sigma)\). Next the author investigates the homotopy type of \(\mathcal{A}_{\mathrm{flat}}(n)\). Here he uses the fact that \(\mathcal{A}_{\mathrm{flat}}(n)\) is the critical set of the Yang-Mills functional, which is defined on the bigger space \(\mathcal{A}(n)\) of all connections on \(\Sigma\times \mathbb{C}^{n}\). Infinite dimensional Morse theory techniques applied to the Yang-Mills functional then yield a stratification for the space \(\mathcal{A}(n)\), and the author uses results from G. D. Daskalopoulos [J. Differ. Geom. 36, No. 3, 699–746 (1992; Zbl 0785.58014)] and J. Råde [J. Reine Angew. Math. 431, 123–163 (1992; Zbl 0760.58041)] to compare this stratification with the so-called Harder-Narasimhan stratification [established by G. Harder and M. S. Narasimhan, Math. Ann. 212, 215–248 (1975; Zbl 0324.14006)]. This allows him to deduce that the connectivity of the inclusion of \(\mathcal{A}_{\mathrm{flat}}(n)\) into \(\mathcal{A}(n)\) increases when \(n\) gets larger. If follows that the colimit over \(n\) of the spaces \(\mathcal{A}_{\mathrm{flat}}(n)/\mathcal{G}(n)\) becomes a classifying space for the stable gauge group \(\mathcal{G}\). Using this and the result mentioned at the first place the author now derives that the homotopy groups \(\pi_{*}B\mathcal{G}\) can be identified with \(K^{\mathrm{def}}_*(\pi_{1}(\Sigma))\) in positive degrees. However, by a well-known result of M. F. Atiyah and R. Bott [Philos. Trans. R. Soc. Lond., A 308, 523–615 (1983; Zbl 0509.14014)] the homotopy groups \(\pi_i B\mathcal{G}\) also coincide with \(K^{-i}(\Sigma)\) for \(i>0\).

MSC:

19L47 Equivariant \(K\)-theory
19L41 Connective \(K\)-theory, cobordism
55N15 Topological \(K\)-theory
58D27 Moduli problems for differential geometric structures
58E15 Variational problems concerning extremal problems in several variables; Yang-Mills functionals

References:

[1] R Abraham, Differential topology, Lecture notes of Smale (1964)
[2] R Abraham, J Robbin, Transversal mappings and flows, W. A. Benjamin (1967) · Zbl 0171.44404
[3] A Adem, Characters and \(K\)-theory of discrete groups, Invent. Math. 114 (1993) 489 · Zbl 0804.55002 · doi:10.1007/BF01232678
[4] A Alekseev, A Malkin, E Meinrenken, Lie group valued moment maps, J. Differential Geom. 48 (1998) 445 · Zbl 0948.53045
[5] M F Atiyah, Characters and cohomology of finite groups, Inst. Hautes Études Sci. Publ. Math. (1961) 23 · Zbl 0107.02303 · doi:10.1007/BF02698718
[6] M F Atiyah, R Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983) 523 · Zbl 0509.14014 · doi:10.1098/rsta.1983.0017
[7] M F Atiyah, G B Segal, Equivariant \(K\)-theory and completion, J. Differential Geometry 3 (1969) 1 · Zbl 0215.24403
[8] G Baumslag, E Dyer, A Heller, The topology of discrete groups, J. Pure Appl. Algebra 16 (1980) 1 · Zbl 0419.20026 · doi:10.1016/0022-4049(80)90040-7
[9] G Carlsson, Derived representation theory and the algebraic \(K\)-theory of fields · Zbl 1230.19001 · doi:10.1112/jtopol/jtr013
[10] G Carlsson, Derived completions in stable homotopy theory, J. Pure Appl. Algebra 212 (2008) 550 · Zbl 1146.55006 · doi:10.1016/j.jpaa.2007.06.015
[11] G D Daskalopoulos, The topology of the space of stable bundles on a compact Riemann surface, J. Differential Geom. 36 (1992) 699 · Zbl 0785.58014
[12] G D Daskalopoulos, K K Uhlenbeck, An application of transversality to the topology of the moduli space of stable bundles, Topology 34 (1995) 203 · Zbl 0835.58005 · doi:10.1016/0040-9383(94)E0014-B
[13] S K Donaldson, P B Kronheimer, The geometry of four-manifolds, Oxford Math. Monogr., Oxford Science Publ., The Clarendon Press, Oxford University Press (1990) · Zbl 0820.57002
[14] A D Elmendorf, I Kriz, M A Mandell, J P May, Rings, modules, and algebras in stable homotopy theory, Math. Surveys and Monogr. 47, Amer. Math. Soc. (1997) · Zbl 0894.55001
[15] A D Elmendorf, M A Mandell, Rings, modules, and algebras in infinite loop space theory, Adv. Math. 205 (2006) 163 · Zbl 1117.19001 · doi:10.1016/j.aim.2005.07.007
[16] B Fine, P Kirk, E Klassen, A local analytic splitting of the holonomy map on flat connections, Math. Ann. 299 (1994) 171 · Zbl 0797.53027 · doi:10.1007/BF01459778
[17] P Griffiths, J Harris, Principles of algebraic geometry, Pure and Applied Math., Wiley-Interscience (1978) · Zbl 0408.14001
[18] K Gruher, String topology of classifying spaces, PhD thesis, Stanford University (2007) · Zbl 1143.57020
[19] G Harder, M S Narasimhan, On the cohomology groups of moduli spaces of vector bundles on curves, Math. Ann. 212 (1975) 215 · Zbl 0324.14006 · doi:10.1007/BF01357141
[20] A Hatcher, Algebraic topology, Cambridge University Press (2002) · Zbl 1044.55001
[21] G Higman, A finitely generated infinite simple group, J. London Math. Soc. 26 (1951) 61 · Zbl 0042.02201 · doi:10.1112/jlms/s1-26.1.61
[22] H Hironaka, Triangulations of algebraic sets, Proc. Sympos. Pure Math. 29, Amer. Math. Soc. (1975) 165 · Zbl 0332.14001
[23] N K Ho, The real locus of an involution map on the moduli space of flat connections on a Riemann surface, Int. Math. Res. Not. (2004) 3263 · Zbl 1075.53086 · doi:10.1155/S107379280414004X
[24] N K Ho, C C M Liu, Connected components of the space of surface group representations, Int. Math. Res. Not. (2003) 2359 · Zbl 1043.53064 · doi:10.1155/S1073792803131297
[25] N K Ho, C C M Liu, On the connectedness of moduli spaces of flat connections over compact surfaces, Canad. J. Math. 56 (2004) 1228 · Zbl 1076.53109 · doi:10.4153/CJM-2004-053-3
[26] N K Ho, C C M Liu, Connected components of spaces of surface group representations. II, Int. Math. Res. Not. (2005) 959 · Zbl 1076.57017 · doi:10.1155/IMRN.2005.959
[27] N K Ho, C C M Liu, Yang-Mills connections on nonorientable surfaces, Comm. Anal. Geom. 16 (2008) 617 · Zbl 1157.58003 · doi:10.4310/CAG.2008.v16.n3.a6
[28] M Hovey, B Shipley, J Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000) 149 · Zbl 0931.55006 · doi:10.1090/S0894-0347-99-00320-3
[29] J Kurzweil, On approximation in real Banach spaces, Studia Math. 14 (1955) 214 · Zbl 0064.10802
[30] S Lang, Differential and Riemannian manifolds, Graduate Texts in Math. 160, Springer (1995) · Zbl 0824.58003
[31] T Lawson, Derived representation theory of nilpotent groups, PhD thesis, Stanford University (2004)
[32] T Lawson, The product formula in unitary deformation \(K\)-theory, \(K\)-Theory 37 (2006) 395 · Zbl 1110.19004 · doi:10.1007/s10977-006-9003-9
[33] T Lawson, The Bott cofiber sequence in deformation \(K\)-theory and simultaneous similarity in \(U(n)\), to appear in Math. Proc. Cambridge Philos. Soc. (2008)
[34] W Lück, Rational computations of the topological \(K\)-theory of classifying spaces of discrete groups, J. Reine Angew. Math. 611 (2007) 163 · Zbl 1144.55007 · doi:10.1515/CRELLE.2007.078
[35] W Lück, B Oliver, The completion theorem in \(K\)-theory for proper actions of a discrete group, Topology 40 (2001) 585 · Zbl 0981.55002 · doi:10.1016/S0040-9383(99)00077-4
[36] D McDuff, G Segal, Homology fibrations and the “group-completion” theorem, Invent. Math. 31 (1976) 279 · Zbl 0306.55020 · doi:10.1007/BF01403148
[37] J Milnor, Construction of universal bundles. II, Ann. of Math. \((2)\) 63 (1956) 430 · Zbl 0071.17401 · doi:10.2307/1970012
[38] P K Mitter, C M Viallet, On the bundle of connections and the gauge orbit manifold in Yang-Mills theory, Comm. Math. Phys. 79 (1981) 457 · Zbl 0474.58004 · doi:10.1007/BF01209307
[39] S Morita, Geometry of characteristic classes, Transl. of Math. Monogr. 199, Amer. Math. Soc. (2001) · Zbl 0976.57026
[40] S Morita, Geometry of differential forms, Trans. of Math. Monogr. 201, Amer. Math. Soc. (2001) · Zbl 0987.58002
[41] D H Park, D Y Suh, Linear embeddings of semialgebraic \(G\)-spaces, Math. Z. 242 (2002) 725 · Zbl 1052.14067 · doi:10.1007/s002090100376
[42] J Råde, On the Yang-Mills heat equation in two and three dimensions, J. Reine Angew. Math. 431 (1992) 123 · Zbl 0760.58041 · doi:10.1515/crll.1992.431.123
[43] D Ramras, The Yang-Mills stratification for surfaces revisited · Zbl 1230.53026 · doi:10.1090/S0002-9939-2010-10614-7
[44] D A Ramras, Excision for deformation \(K\)-theory of free products, Algebr. Geom. Topol. 7 (2007) 2239 · Zbl 1127.19003 · doi:10.2140/agt.2007.7.2239
[45] D Ramras, Stable representation theory of infinite discrete groups, PhD thesis, Stanford University (2007)
[46] G Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. (1968) 105 · Zbl 0199.26404 · doi:10.1007/BF02684591
[47] G Segal, Categories and cohomology theories, Topology 13 (1974) 293 · Zbl 0284.55016 · doi:10.1016/0040-9383(74)90022-6
[48] M R Sepanski, Compact Lie groups, Graduate Texts in Math. 235, Springer (2007) · Zbl 1246.22001
[49] M Thaddeus, An introduction to the topology of the moduli space of stable bundles on a Riemann surface (editors J E Andersen, J Dupont, H Pedersen, A Swann), Lecture Notes in Pure and Appl. Math. 184, Dekker (1997) 71 · Zbl 0869.58006
[50] K K Uhlenbeck, Connections with \(L^p\) bounds on curvature, Comm. Math. Phys. 83 (1982) 31 · Zbl 0499.58019 · doi:10.1007/BF01947069
[51] K Wehrheim, Uhlenbeck compactness, EMS Series of Lectures in Math., Eur. Math. Soc. (2004) · Zbl 1055.53027
[52] H Whitney, Elementary structure of real algebraic varieties, Ann. of Math. \((2)\) 66 (1957) 545 · Zbl 0078.13403 · doi:10.2307/1969908
[53] A Wilansky, Topology for analysis, Robert E. Krieger Publishing Co. (1983)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.