×

Schur polynomials and the Yang-Baxter equation. (English) Zbl 1232.05234

Summary: We describe a parametrized Yang-Baxter equation with nonabelian parameter group. That is, we show that there is an injective map \(g \mapsto R(g)\) from \(\text{GL}(2,\mathbb{C}) \times \text{GL}(1,\mathbb{C})\) to
\(\text{End}(V\otimes V)\), where \(V\) is a two-dimensional vector space such that if \(g, h\in G\) then \[ R_{12}(g) R_{13}(gh) R_{23}(h) = R_{23}(h) R_{13}(gh) R_{12}(g). \] Here \(R_{ij}\) denotes \(R\) applied to the \(i,j\) components of \(V \otimes V \otimes V\). The image of this map consists of matrices whose nonzero coefficients \(a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}\) are the Boltzmann weights for the non-field-free six-vertex model, constrained to satisfy \(a_{1} a_{2} + b_{1} b_{2} - c_{1} c_{2} = 0\). This is the exact center of the disordered regime, and is contained within the free fermionic eight-vertex models of C. Fan and F.-Y. Wu [Ising model with next-neighbor interactions. I: Some exact results and an approximate solution. Phys. Rev. 179, 560–570 (1969); General lattice model of phase transitions. Phys. Rev. B 2, No. 3, 723–733 (1970)].
As an application, we show that with boundary conditions corresponding to integer partitions \(\lambda \), the six-vertex model is exactly solvable and equal to a Schur polynomial \(s_{\lambda }\) times a deformation of the Weyl denominator. This generalizes and gives a new proof of results of T. Tokuyama [A generating function of strict Gelfand patterns and some formulas on characters of general linear groups. J. Math. Soc. Japan 40, No. 4, 671–685 (1988; Zbl 0639.20022)] and A. M. Hamel and R. C. King [U-turn alternating sign matrices, symplectic shifted tableaux and their weighted enumeration. J. Algebr. Comb. 21, No. 4, 395–421 (2005; Zbl 1066.05012); Bijective proofs of shifted tableau and alternating sign matrix identities. J. Algebr. Comb. 25, No. 4, 417–458 (2007; Zbl 1122.05094)].

MSC:

82B23 Exactly solvable models; Bethe ansatz
16T25 Yang-Baxter equations
05E10 Combinatorial aspects of representation theory
05A17 Combinatorial aspects of partitions of integers

Software:

SageMath

References:

[1] Baxter R.J.: The inversion relation method for some two-dimensional exactly solved models in lattice statistics. J. Stat. Phys 28(1), 1–41 (1982) · doi:10.1007/BF01011621
[2] Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. London: Academic Press Inc. [Harcourt Brace Jovanovich Publishers], 1982 · Zbl 0538.60093
[3] Brubaker B., Bump D., Friedberg S.: Weyl Group Multiple Dirichlet Series: Type A Combinatorial Theory Annals of Mathematics Studies, Vol. 175. NJ: Princeton University Press, Princeton (2011) · Zbl 1288.11052
[4] Brubaker B., Bump D., Friedberg S.: Weyl group multiple Dirichlet series, Eisenstein series and crystal bases. Ann. of Math 173, 1081–1120 (2011) · Zbl 1302.11032 · doi:10.4007/annals.2011.173.2.13
[5] Brubaker, B., Bump, D., Chinta, G., Friedberg, S., Gunnells, P.: Metaplectic ice. http://arxiv.org/abs/1009.1741v1 [math.RT], 2010 · Zbl 1264.22014
[6] Drinfeld, V.G.: Quantum groups. Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Providence, RI: Amer. Math. Soc., 1987, pp. 798–820
[7] Faddeev, L.D., Reshetikhin, N.Yu., Takhtajan, L.A.: Quantization of Lie groups and Lie algebras. In: Algebraic Analysis, Vol. I, Boston, MA: Academic Press, 1988, pp. 129–139
[8] Fan C., Wu F.Y.: Ising model with next-neighbor interactions. I. Some exact results and an approximate solution Phys. Rev 179, 560–570 (1969) · doi:10.1103/PhysRev.179.560
[9] Fan C., Wu F.Y.: General lattice model of phase transitions. Phys. Revi. B 2(3), 723–733 (1970) · doi:10.1103/PhysRevB.2.723
[10] Fomin, S., Kirillov, A.N.: The Yang-Baxter equation, symmetric functions, and Schubert polynomials. In: Proc. of the 5th Conference on Formal Power Series and Algebraic Combinatorics (Florence, 1993), Disc. Math. 153, 123–143 (1996) · Zbl 0852.05078
[11] Fomin, S., Kirillov, A.N.: Grothendieck polynomials and the Yang-Baxter equation. In: Formal power series and algebraic combinatorics/Séries formelles et combinatoire algébrique, Piscataway, NJ: DIMACS, 1994, pp. 183–189
[12] Hamel A.M., King R.C.: U-turn alternating sign matrices, symplectic shifted tableaux and their weighted enumeration. J. Alg. Comb 21(4), 395–421 (2005) · Zbl 1066.05012 · doi:10.1007/s10801-005-3019-8
[13] Hamel A.M., King R.C.: Bijective proofs of shifted tableau and alternating sign matrix identities. J. Alg. Comb 25(4), 417–458 (2007) · Zbl 1122.05094 · doi:10.1007/s10801-006-0044-1
[14] Izergin A.G.: Partition function of a six-vertex model in a finite volume. Dokl. Akad. Nauk SSSR 297(2), 331–333 (1987) · Zbl 0875.82015
[15] Jimbo M.: Introduction to the Yang-Baxter equation. Internat. J. Modern Phys. A 4(15), 3759–3777 (1989) · Zbl 0697.35131 · doi:10.1142/S0217751X89001503
[16] Jimbo M., Miwa T.: Solitons and infinite-dimensional Lie algebras. Publ. Res. Inst. Math. Sci 19(3), 943–1001 (1983) · Zbl 0557.35091 · doi:10.2977/prims/1195182017
[17] Kirillov A.N., Reshetikhin N.Yu.: The Bethe ansatz and the combinatorics of Young tableaux. J. Soviet Math 41(2), 925–955 (1988) · Zbl 0639.20029 · doi:10.1007/BF01247088
[18] Korepin V.E.: Calculation of norms of Bethe wave functions. Commun. Math. Phys 86(3), 391–418 (1982) · Zbl 0531.60096 · doi:10.1007/BF01212176
[19] Kuperberg G.: Another proof of the alternating-sign matrix conjecture. Int. Math. Res. Notices 1996(3), 139–150 (1996) · Zbl 0859.05027 · doi:10.1155/S1073792896000128
[20] Lascoux, A.: Chern and Yang through ice. Preprint, 2002
[21] Lascoux, A.: The 6 vertex model and Schubert polynomials. SIGMA Symmetry Integrability Geom. Methods Appl. 3, Paper 029, 12 pp. (electronic) (2007) · Zbl 1138.05073
[22] Lascoux, A., Schützenberger, M.-P.: Symmetry and flag manifolds. In: Invariant theory (Montecatini, 1982), Volume 996 of Lecture Notes in Math., Berlin: Springer, 1983, pp. 118–144
[23] Lieb E.: Exact solution of the problem of entropy in two-dimensional ice. Phys. Rev. Lett 18, 692–694 (1967) · doi:10.1103/PhysRevLett.18.692
[24] Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford Mathematical Monographs. New York: The Clarendon Press/Oxford University Press, Second edition, 1995, (with contributions by A. Zelevinsky)
[25] Majid S.: Quasitriangular Hopf algebras and Yang-Baxter equations. Int. J. Mod. Phys. A 5(1), 1–91 (1990) · Zbl 0709.17009 · doi:10.1142/S0217751X90000027
[26] McNamara, P.J.: Factorial Schur functions via the six-vertex model. http://arxiv.org/abs/0910.5288v2 [math.co], 2009
[27] Mills W.H., Robbins D.P., Rumsey H. Jr.: Alternating sign matrices and descending plane partitions. J. Comb. Th. Ser. A 34(3), 340–359 (1983) · Zbl 0516.05016 · doi:10.1016/0097-3165(83)90068-7
[28] Okada S.: Alternating sign matrices and some deformations of Weyl’s denominator formulas. J. Alg. Comb 2(2), 155–176 (1993) · Zbl 0781.15008 · doi:10.1023/A:1022463708817
[29] Robbins D.P., Rumsey H. Jr.: Determinants and alternating sign matrices. Adv. in Math. 62(2), 169–184 (1986) · Zbl 0611.15008 · doi:10.1016/0001-8708(86)90099-X
[30] Stein, W., et al.: SAGE Mathematical Software, Version 4.1. http://www.sagemath.org , 2009
[31] Stroganov Yu.G.: The Izergin-Korepin determinant at a cube root of unity. Teoret. Mat. Fiz 146(1), 65–76 (2006) · Zbl 1177.82042 · doi:10.4213/tmf2009
[32] Sutherland B.: Exact solution for a model for hydrogen-bonded crystals. Phys. Rev. Lett 19(3), 103–104 (1967) · doi:10.1103/PhysRevLett.19.103
[33] Tokuyama T.: A generating function of strict Gelfand patterns and some formulas on characters of general linear groups. J. Math. Soc. Japan 40(4), 671–685 (1988) · Zbl 0639.20022 · doi:10.2969/jmsj/04040671
[34] Tsilevich N.V.: The quantum inverse scattering problem method for the q-boson model, and symmetric functions. Funkt. Anal. i Priloz. 40(3), 53–65, 96 (2006) · Zbl 1118.81041 · doi:10.4213/faa743
[35] Zinn-Justin, P.: Six-vertex loop and tiling models: Integrability and combinatorics. Habilitation thesis http://arxiv.org/abs/0901.0665v2 [math-ph], 2009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.