×

Schrödinger operators with \(\delta^{\prime}\)-interactions and the Kreĭn-Stieltjes string. (English. Russian original) Zbl 1204.47052

Dokl. Math. 81, No. 3, 342-347 (2010); translation from Dokl. Akad. Nauk., Ross. Akad. Nauk. 432, No. 1, 12-17 (2010).
Summary: We investigate the one-dimensional symmetric Schrödinger operator \(H_{X,\beta}\) with \(\delta^{\prime}\)-interactions of strength \(\beta = \{\beta_n \}_{n = 1}^{\infty } \subset \mathbb R\) on a discrete set \(X = \{ x_n \}_{n = 1}^{\infty } \subset [0, b)\), \(b \leq + \infty\) (\(x_n \uparrow b\)). We consider \(H_{X, \beta}\) as an extension of the minimal operator \(H_{\min}:= - d^{2}/dx ^{2}\lceil W_{0}^{2.2}(\mathbb R \setminus X)\) and study its spectral properties in the framework of the extension theory by using the technique of boundary triplets and the corresponding Weyl functions. The construction of a boundary triplet for \(H _{\min}^{*}\) is given in the case \(d_{*} := \inf_{n \in \mathbb N} |x_n - x_{n-1} | = 0\). We show that spectral properties like selfadjointness, lower semiboundedness, nonnegativity, and discreteness of the spectrum of the operator \(H_{X, \beta}\) correlate with the corresponding properties of a certain Jacobi matrix. In the case \(\beta_n > 0\), \(n \in \mathbb N\), these matrices form a subclass of Jacobi matrices generated by the Krein-Stieltjes strings. The connection discovered enables us to obtain simple conditions for the operator \(H_{X, \beta}\) to be selfadjoint, lower semibounded and discrete. These conditions depend significantly not only on \(\beta \) but also on \(X\). Moreover, as distinct from the case \(d_{*} > 0\), the spectral properties of Hamiltonians with \(\delta\)- and \(\delta^{\prime}\)-interactions in the case \(d_{*} = 0\) substantially differ.

MSC:

47E05 General theory of ordinary differential operators
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
47B36 Jacobi (tridiagonal) operators (matrices) and generalizations
47A10 Spectrum, resolvent
Full Text: DOI

References:

[1] N. I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis (Fizmatgiz, Moscow, 1961; Oliver and Boyd Ltd, Edinburgh, London, 1965). · Zbl 0124.06202
[2] S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics, Sec. Edition (AMS Chelsea Publ., 2005).
[3] S. Albeverio and L. Nizhnik, Math. Nachr. 279, 467 (2006). · Zbl 1105.47039 · doi:10.1002/mana.200310371
[4] Ju. M. Berezanskii, Expansions in Eigenfunctions of Self-Adjoint Operators (Naukova Dumka, Kiev, 1965; Translations of Mathematical Monographs, AMS, 1968, Vol. 17).
[5] D. Buschmann, G. Stolz, and J. Weidmann, J. Reine Angew. Math. 467, 169 (1995).
[6] N. Goloschapova and L. Oridoroga, Integr. Equations Oper. Theory 67(1), 1–14 (2010); DOI 10.1007/s00020-010-1759-x. · Zbl 1215.34108 · doi:10.1007/s00020-010-1759-x
[7] V. I. Gorbachuk and M. L. Gorbachuk, Boundary Value Problems for Operator-Differential Equations (Naukova Dumka, Kiev, 1984; Mathematics and Its Applications (Soviet Series), Kluwer Academic Publishers Group, Dordrecht, 1991, Vol. 48). · Zbl 0567.47041
[8] V. A. Derkach, S. Hassi, M. M. Malamud, and H. S. V. de Snoo, Trans. Am. Math. Soc. 358(12), 5351 (2006). · Zbl 1123.47004 · doi:10.1090/S0002-9947-06-04033-5
[9] V. A. Derkach and M. M. Malamud, J. Fund. Anal. 95, 1 (1991). · Zbl 0748.47004 · doi:10.1016/0022-1236(91)90024-Y
[10] I. S. Kac and M. G. Krein, Izv. VUZov, Ser. Matem. 2(3), 136 (1958).
[11] A. S. Kostenko and M. Malamud, J. Differ. Equations (2010), DOI: 10.1016/j.jde.2010.02.011.
[12] A. N. Kochubei, Ukr. Matem. Zhurn. 41(10), 1391 (1989) [Ukr. Math. J. 41, 1391 (1989)].
[13] M. M. Malamud and H. Neidhardt, arXiv:0907.0650v1.
[14] V. A. Mikhajlets, Dokl. Akad. Nauk 348(6), 727 (1996).
[15] L. P. Nizhnik, Funktsion. Analiz i Ego Prilozh. 37(1), 85 (2003) [Funct. Anal. Appl. 37 (1), 72 (2003)]. · doi:10.4213/faa140
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.