×

Trees, set compositions and the twisted descent algebra. (English) Zbl 1180.05032

Summary: We first show that increasing trees are in bijection with set compositions, extending simultaneously a recent result on trees due to Tonks and a classical result on increasing binary trees. We then consider algebraic structures on the linear span of set compositions (the twisted descent algebra). Among others, a number of enveloping algebra structures are introduced and studied in detail. For example, it is shown that the linear span of trees carries an enveloping algebra structure and embeds as such in an enveloping algebra of increasing trees. All our constructions arise naturally from the general theory of twisted Hopf algebras.

MSC:

05C05 Trees
05E05 Symmetric functions and generalizations
16T30 Connections of Hopf algebras with combinatorics

References:

[1] M.G. Barratt, “Twisted Lie algebras. Geometric applications of homotopy theory,” in Proceedings of the Conference, Evanston 1977. Lecture Notes in Mathematics 658, Springer, Berlin, 1978, pp. 9-15. · Zbl 0393.55021
[2] N. Bergeron, C. Reutenauer, M. Rosas, and M. Zabrocki, “Invariants and Coinvariants of the Symmetric Group in Noncommuting Variables,” Preprint arXiv:math.RA/0502082. · Zbl 1180.16025
[3] N. Bergeron and M. Zabrocki, “The Hopf algebras of symmetric functions and quasisymmetric functions in non-commutative variables are free and cofree,” Preprint arXiv:math.RA/0505137. · Zbl 1188.16030
[4] C. Brouder and A. Frabetti, “QED Hopf algebras on planar binary trees,” J. Alg. 267(1) (2003), 298-322. · Zbl 1056.16026 · doi:10.1016/S0021-8693(03)00331-4
[5] F. Chapoton, “Algébres de Hopf des permutahédres, associahédres et hypercubes,” Adv. Math. 150(2), (2000), 264-275. · Zbl 0958.16038 · doi:10.1006/aima.1999.1868
[6] A. Connes and D. Kreimer, “Hopf algebras, renormalization and noncommutative geometry,” Commun. Math. Phys. 199(1) (1998), 203-242. · Zbl 0932.16038 · doi:10.1007/s002200050499
[7] H. Figueroa and J. Gracia-Bondia, “Combinatorial Hopf algebras in quantum field theory I,” Preprint arXiv:hep-th/0408145. · Zbl 1090.16016
[8] A. Joyal, “Foncteurs analytiques et espéces de structures,” in Combinatoire énumérative, Proc. Colloq., Montréal, Canada, 1985. Lecture Notes in Mathematics 1234, Springer, Berlin, 1986, pp. 126-159. · Zbl 0612.18002
[9] J.-L. Loday, “Dialgebras,” in: Dialgebras and Related Operads,“ <Emphasis Type=”Italic”>Lecture Notes in Mathematics 1736, Springer, Berlin, 2001, pp. 7-66. · Zbl 0999.17002
[10] J.-L. Loday and M.O. Ronco, “Hopf algebra of the planar binary trees,” Adv. Math. 139(2) (1998), 293-309. · Zbl 0926.16032 · doi:10.1006/aima.1998.1759
[11] J.W. Milnor and J.C. Moore, “On the structure of Hopf algebras,” Ann. of Math. 81(2) (1965), 211-264. · Zbl 0163.28202 · doi:10.2307/1970615
[12] J.-C. Novelli and J.-Y. Thibon, “Polynomial realizations of some trialgebras,” Preprint arXiv:math.CO/0605061.
[13] F. Patras, “La décomposition en poids des algébres de Hopf,” Ann. Inst. Fourier (Grenoble) 43(4) (1993), 1067-1087. · Zbl 0795.16028
[14] F. Patras, “L’algébre des descentes d’une bigébre graduée,” J. Alg. 170(2) (1994), 547-566. · Zbl 0819.16033 · doi:10.1006/jabr.1994.1352
[15] F. Patras and C. Reutenauer, “On descent algebras and twisted bialgebras,” Moscow Math. J. 4(1) (2004), 199-216. · Zbl 1103.16026
[16] F. Patras and M. Schocker, “Twisted descent algebras and the Solomon-Tits algebra,” Adv. in Math. 199(1) (2006), 151-184. · Zbl 1154.16029 · doi:10.1016/j.aim.2005.01.010
[17] D. Rawlings, “The ABC’s of classical enumeration,” Ann. Sci. Math. Québec. 10(2) (1986), 207-235. · Zbl 0608.05006
[18] M. Schocker, “The module structure of the Solomon-Tits algebra of the symmetric group,” J. Alg. 301(2) (2006), 554-586. · Zbl 1155.20012 · doi:10.1016/j.jalgebra.2005.07.032
[19] R. Stanley, Enumerative combinatorics, Volume I, The Wadsworth and Brooks/Cole Mathematics Series. Monterey, California, 1986. · Zbl 0608.05001
[20] C.R. Stover, “The equivalence of certain categories of twisted Lie and Hopf algebras over a commutative ring,” J. Pure Appl. Algebra86(3) (1993), 289-326. · Zbl 0793.16016 · doi:10.1016/0022-4049(93)90106-4
[21] A. Tonks, “Relating the associahedron and the permutohedron,” Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), 33-36, Contemp. Math., 202, Amer. Math. Soc., Providence, RI, 1997. · Zbl 0873.51016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.