×

Center manifolds for periodic functional differential equations of mixed type. (English) Zbl 1157.34052

The behaviour of solutions of functional differential equations of mixed type near a periodic solution is investigated. More precisely, under appropriate assumptions the authors show the existence of a finite dimensional invariant manifold, which contains all solutions that stay sufficiently close to a specific periodic solution for all times. The proof of this result relies mainly on a certain discreteness condition of the Floquet spectrum, which the authors show to be satisfied for some specific model equations where the forward and backward delays are rationally related to the period of the periodic solution.

MSC:

34K19 Invariant manifolds of functional-differential equations
34K17 Transformation and reduction of functional-differential equations and systems, normal forms
34K13 Periodic solutions to functional-differential equations
Full Text: DOI

References:

[1] Abell, K. A.; Elmer, C. E.; Humphries, A. R.; Van Vleck, E. S., Computation of mixed type functional differential boundary value problems, SIAM J. Appl. Dyn. Syst., 4, 755-781 (2005) · Zbl 1090.65093
[2] Bateman, M. D.; Van Vleck, E. S., Traveling wave solutions to a coupled system of spatially discrete Nagumo equations, SIAM J. Appl. Math., 66, 945-976 (2006) · Zbl 1101.92005
[3] Bates, P. W.; Chmaj, A., A discrete convolution model for phase transitions, Arch. Ration. Mech. Anal., 150, 281-305 (1999) · Zbl 0956.74037
[4] Bell, J., Some threshold results for models of myelinated nerves, Math. Biosci., 54, 181-190 (1981) · Zbl 0454.92009
[5] Cahn, J. W., Theory of crystal growth and interface motion in crystalline materials, Acta Met., 8, 554-562 (1960)
[6] Cahn, J. W.; Mallet-Paret, J.; Van Vleck, E. S., Traveling wave solutions for systems of ODEs on a two-dimensional spatial lattice, SIAM J. Appl. Math., 59, 455-493 (1999) · Zbl 0917.34052
[7] Chua, L. O.; Roska, T., The CNN paradigm, IEEE Trans. Circuits Syst., 40, 147-156 (1993) · Zbl 0800.92041
[8] d’Albis, H.; Augeraud-Véron, E., Balanced cycles in an OLG model with a continuum of finitely-lived individuals, J. Econom. Theory, 30, 181-186 (2007) · Zbl 1124.91049
[9] Diekmann, O.; van Gils, S. A.; Verduyn Lunel, S. M.; Walther, H. O., Delay Equations (1995), Springer-Verlag: Springer-Verlag New York · Zbl 0826.34002
[10] Dieudonné, J., Foundations of Modern Analysis (1960), Academic Press: Academic Press New York · Zbl 0100.04201
[11] Elmer, C. E.; Van Vleck, E. S., A variant of Newton’s method for the computation of traveling waves of bistable differential-difference equations, J. Dynam. Differential Equations, 14, 493-517 (2002) · Zbl 1007.65062
[12] Erneux, T.; Nicolis, G., Propagating waves in discrete bistable reaction-diffusion systems, Phys. D, 67, 237-244 (1993) · Zbl 0787.92010
[13] Hale, J. K.; Verduyn Lunel, S. M., Introduction to Functional Differential Equations (1993), Springer-Verlag: Springer-Verlag New York · Zbl 0787.34002
[14] Härterich, J.; Sandstede, B.; Scheel, A., Exponential dichotomies for linear non-autonomous functional differential equations of mixed type, Indiana Univ. Math. J., 51, 1081-1109 (2002) · Zbl 1047.34079
[15] Hupkes, H. J.; Augeraud-Veron, E.; Verduyn Lunel, S. M., Center projections for smooth difference equations of mixed type, J. Differential Equations, 244, 803-835 (2008) · Zbl 1143.34053
[16] H.J. Hupkes, Invariant manifolds and applications for functional differential equations of mixed type, PhD thesis, University of Leiden, 2008; H.J. Hupkes, Invariant manifolds and applications for functional differential equations of mixed type, PhD thesis, University of Leiden, 2008 · Zbl 1157.34052
[17] Hupkes, H. J.; Verduyn Lunel, S. M., Analysis of Newton’s method to compute travelling waves in discrete media, J. Dynam. Differential Equations, 17, 523-572 (2005) · Zbl 1144.34382
[18] Hupkes, H. J.; Verduyn Lunel, S. M., Center manifold theory for functional differential equations of mixed type, J. Dynam. Differential Equations, 19, 497-560 (2007) · Zbl 1132.34054
[19] Kaashoek, M. A.; Verduyn Lunel, S. M., Characteristic matrices and spectral properties of evolutionary systems, Trans. Amer. Math. Soc., 334, 479-517 (1992) · Zbl 0768.34041
[20] Keener, J.; Sneed, J., Mathematical Physiology (1998), Springer-Verlag: Springer-Verlag New York · Zbl 0913.92009
[21] Laplante, J. P.; Erneux, T., Propagation failure in arrays of coupled bistable chemical reactors, J. Phys. Chem., 96, 4931-4934 (1992)
[22] Luzyanina, T.; Engelborghs, K., Computing Floquet multipliers for functional differential equations, Internat. J. Bifur. Chaos, 12, 2977-2989 (2002) · Zbl 1048.65126
[23] Mallet-Paret, J., The Fredholm alternative for functional differential equations of mixed type, J. Dynam. Differential Equations, 11, 1-48 (1999) · Zbl 0927.34049
[24] Mallet-Paret, J., The global structure of traveling waves in spatially discrete dynamical systems, J. Dynam. Differential Equations, 11, 49-128 (1999) · Zbl 0921.34046
[25] J. Mallet-Paret, Crystallographic pinning: Direction dependent pinning in lattice differential equations, preprint, 2001; J. Mallet-Paret, Crystallographic pinning: Direction dependent pinning in lattice differential equations, preprint, 2001
[26] Mielke, A., Floquet theory for, and bifurcations from spatially periodic patterns, Tatra Mt. Math. Publ., 4, 153-158 (1994) · Zbl 0811.35008
[27] Rustichini, A., Hopf bifurcation for functional-differential equations of mixed type, J. Dynam. Differential Equations, 1, 145-177 (1989) · Zbl 0684.34070
[28] Skubachevskii, A. L.; Walther, H. O., On the Floquet multipliers of periodic solutions to non-linear functional differential equations, J. Dynam. Differential Equations, 18, 257-355 (2006) · Zbl 1116.34054
[29] Strunz, T.; Elmer, F. J., Driven Frenkel-Kontorova model. I. Uniform sliding states and dynamical domains of different particle densities, Phys. Rev. E, 58, 1601-1611 (1998)
[30] Strunz, T.; Elmer, F. J., Driven Frenkel-Kontorova model. II. Chaotic sliding and nonequilibrium melting and freezing, Phys. Rev. E, 58, 1612-1620 (1998)
[31] Szalai, R.; Stépán, G.; Hogan, S. J., Continuation of bifurcations in periodic delay-differential equations using characteristic matrices, SIAM J. Sci. Comput., 28, 1301-1317 (2006) · Zbl 1118.37037
[32] Vanderbauwhede, A.; van Gils, S. A., Center manifolds and contractions on a scale of Banach spaces, J. Functional Anal., 72, 209-224 (1987) · Zbl 0621.47050
[33] Walther, H. O., Bifurcation from periodic solutions in functional differential equations, Math. Z., 182, 269-289 (1983) · Zbl 0488.34066
[34] Widder, D. V., The Laplace Transform (1946), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · Zbl 0060.24801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.