×

On the combinatorics of crystal graphs. I: Lusztig’s involution. (English) Zbl 1129.05058

[For Part II see Proc. Am. Math. Soc. 136, No. 3, 825–837 (2008; Zbl 1129.05058 below).]
In two recent papers the author of the paper under review and A. Postnikov have developed a new combinatorial model for the irreducible characters of a complex semisimple Lie group \(G\); see e.g. C. Lenart and A. Postnikov [Affine Weyl groups in K-theory and representation theory, Int. Math. Res. Not. 2007, No. 12, Article ID rnm038, 65 p. (2007; Zbl 1137.14037)]. This model is called the alcove path model and combines the context of the equivariant K-theory of the generalized flag varity \(G/B\) and ideas based on the Stembridge combinatorial model for Weyl characters. It leads to an extensive generalization of the combinatorics of irreducible characters from Lie type A to arbitrary type. In the present paper the author continues the development of the new model. The approach is type-independent. The main results are: (1) A combinatorial description of the crystal graphs corresponding to the irreducible representations. In particular, the author gives a transparent proof, based on the Yang–Baxter equation, that the mentioned description does not depend on the choice involved in the model; (2) A combinatorial realization of Lusztig’s involution on the canonical basis exhibiting the crystals as self-dual posets; (3) An analog for arbitrary root systems, based on the Yang–Baxter equation, of Schützenberger’s jeu de taquin.

MSC:

05E15 Combinatorial aspects of groups and algebras (MSC2010)
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
20G05 Representation theory for linear algebraic groups
22E46 Semisimple Lie groups and their representations

References:

[1] Berenstein, A.; Zelevinsky, A., Canonical bases for the quantum group of type \(A_r\) and piecewise-linear combinatorics, Duke Math. J., 82, 473-502 (1996) · Zbl 0898.17006
[2] Berenstein, A.; Zelevinsky, A., Tensor product multiplicities, canonical bases and totally positive varieties, Invent. Math., 143, 77-128 (2001) · Zbl 1061.17006
[3] Brenti, F.; Fomin, S.; Postnikov, A., Mixed Bruhat operators and Yang-Baxter equations for Weyl groups, Int. Math. Res. Not., 8, 419-441 (1999) · Zbl 0978.22008
[4] Cherednik, I., Quantum Knizhnik-Zamolodchikov equations and affine root systems, Comm. Math. Phys., 150, 109-136 (1992) · Zbl 0849.17025
[5] Demazure, M., Désingularization des variétés de Schubert, Ann. École Norm. Sup. (4), 6, 53-88 (1974) · Zbl 0312.14009
[6] Deodhar, V. V., A splitting criterion for the Bruhat orderings on Coxeter groups, Comm. Algebra, 15, 1889-1894 (1987) · Zbl 0631.20030
[7] Dyer, M. J., Hecke algebras and shellings of Bruhat intervals, Compositio Math., 89, 1, 91-115 (1993) · Zbl 0817.20045
[8] Fulton, W., Young Tableaux, London Math. Soc. Stud. Texts, vol. 35 (1997), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0878.14034
[9] Gaussent, S.; Littelmann, P., LS-galleries, the path model and MV-cycles, Duke Math. J., 127, 35-88 (2005) · Zbl 1078.22007
[10] Henriques, A.; Kamnitzer, J., Crystals and coboundary categories, Duke Math. J., 132, 191-216 (2006) · Zbl 1123.22007
[11] Humphreys, J. E., Reflection Groups and Coxeter Groups, Cambridge Stud. Adv. Math., vol. 29 (1990), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0725.20028
[12] Kashiwara, M., Crystalizing the \(q\)-analogue of universal enveloping algebras, Comm. Math. Phys., 133, 249-260 (1990) · Zbl 0724.17009
[13] Kashiwara, M., Crystal bases of modified quantized enveloping algebra, Duke Math. J., 73, 383-413 (1994) · Zbl 0794.17009
[14] Kashiwara, M., On crystal bases, (Representations of Groups. Representations of Groups, Banff, AB, 1994. Representations of Groups. Representations of Groups, Banff, AB, 1994, CMS Conf. Proc., vol. 16 (1995)), 155-197 · Zbl 0851.17014
[15] Kostant, B., Powers of the Euler product and commutative subalgebras of a complex simple Lie algebra, Invent. Math., 158, 181-226 (2004) · Zbl 1076.17002
[16] Lakshmibai, V.; Seshadri, C. S., Standard monomial theory, (Proceedings of the Hyderabad Conference on Algebraic Groups. Proceedings of the Hyderabad Conference on Algebraic Groups, Hyderabad, 1989 (1991), Manoj Prakashan: Manoj Prakashan Madras), 279-322 · Zbl 0785.14028
[17] Lascoux, A., Double crystal graphs, (Studies in Memory of Issai Schur. Studies in Memory of Issai Schur, Chevaleret/Rehovot, 2000. Studies in Memory of Issai Schur. Studies in Memory of Issai Schur, Chevaleret/Rehovot, 2000, Progr. Math., vol. 210 (2003), Birkhäuser Boston: Birkhäuser Boston Boston, MA), 95-114 · Zbl 1060.05097
[18] Lascoux, A.; Schützenberger, M.-P., Keys and standard bases, (Stanton, D., Invariant Theory and Tableaux. Invariant Theory and Tableaux, IMA Vol. Math. Appl., vol. 19 (1990), Springer: Springer Berlin), 125-144 · Zbl 0815.20013
[19] Lecouvey, C., Schensted-type correspondence, plactic monoid, and jeu de taquin for type \(C_n\), J. Algebra, 247, 295-331 (2002) · Zbl 1007.05098
[20] Lecouvey, C., Schensted-type correspondences and plactic monoids for types \(B_n\) and \(D_n\), J. Algebraic Combin., 18, 99-133 (2003) · Zbl 1023.05133
[21] van Leeuwen, M. A.A., An analogue of jeu de taquin for Littelmann’s crystal paths, Sém. Lothar. Combin., 41 (1998), Art. B41b, 23 pp · Zbl 0902.05079
[22] Lenart, C.; Postnikov, A., Affine Weyl groups in \(K\)-theory and representation theory, Trans. Amer. Math. Soc., in press · Zbl 1137.14037
[23] Lenart, C.; Postnikov, A., A combinatorial model for crystals of Kac-Moody algebras · Zbl 1211.17021
[24] Littelmann, P., A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras, Invent. Math., 116, 329-346 (1994) · Zbl 0805.17019
[25] Littelmann, P., Paths and root operators in representation theory, Ann. of Math. (2), 142, 499-525 (1995) · Zbl 0858.17023
[26] Littelmann, P., Characters of representations and paths in \(h_R^*\), (Representation Theory and Automorphic Forms. Representation Theory and Automorphic Forms, Edinburgh, 1996. Representation Theory and Automorphic Forms. Representation Theory and Automorphic Forms, Edinburgh, 1996, Proc. Sympos. Pure Math., vol. 61 (1997), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 29-49 · Zbl 0892.17010
[27] Littelmann, P., Contracting modules and standard monomial theory for symmetrizable Kac-Moody algebras, J. Amer. Math. Soc., 11, 551-567 (1998) · Zbl 0915.20022
[28] Lothaire, M., The plactic monoid, (Lascoux, A.; Leclerc, B.; Thibon, J.-Y., Algebraic Combinatorics on Words (2002), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 144-172 · Zbl 1001.68093
[29] Lusztig, G., Canonical bases arising from quantized enveloping algebras. II, Progr. Theoret. Phys. Suppl., 102, 175-201 (1991) · Zbl 0776.17012
[30] Lusztig, G., Introduction to Quantum Groups, Progr. Math., vol. 110 (1993), Birkhäuser Boston: Birkhäuser Boston Boston, MA · Zbl 0788.17010
[31] Morier-Genoud, S., Relèvement géométrique de la base canonique et involution de Schützenberger, C. R. Math. Acad. Sci. Paris, 337, 371-374 (2003), (in French) · Zbl 1038.22006
[32] Sheats, J., A symplectic jeu de taquin bijection between the tableaux of King and of De Concini, Trans. Amer. Math. Soc., 351, 3569-3607 (1999) · Zbl 0940.05069
[33] Stembridge, J. R., Combinatorial models for Weyl characters, Adv. Math., 168, 96-131 (2002) · Zbl 1035.22011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.