×

On the algebra of quasi-shuffles. (English) Zbl 1126.16029

A commutative tri-dendriform algebra (CTD-algebra) is determined by two operations, denoted by \(\prec\) (left) and \(\cdot\) (dot), satisfying certain axioms. The aim of the paper is to show that the tensor module of the (non-constant) polynomial algebra with the quasi-shuffle algebra structure (called the stuffle algebra) is a free unital CTD-algebra. A non-commutative version of this is also proved in the paper. A quasi-shuffle algebra is in fact a CTD-bialgebra. The author proves a structure theorem for connected CTD-bialgebras.

MSC:

16W30 Hopf algebras (associative rings and algebras) (MSC2000)
18D50 Operads (MSC2010)
17A30 Nonassociative algebras satisfying other identities

References:

[1] Aguiar, M., Pre-Poisson algebras, Lett. Math. Phys., 54, 4, 263-277 (2000) · Zbl 1032.17038 · doi:10.1023/A:1010818119040
[2] Brouder, Ch.; Frabetti, A.; Krattenthaler, C., Non-commutative Hopf algebra of formal diffeomorphisms, Adv. Math., 200, 2, 479-524 (2006) · Zbl 1133.16025 · doi:10.1016/j.aim.2005.01.005
[3] Brouder, Ch.; Schmitt, W., Renormalization as a functor on bialgebras, J. Pure Appl. Alg., 209, 477-495 (2007) · Zbl 1274.81170 · doi:10.1016/j.jpaa.2006.06.013
[4] Burgunder, E.: Bigèbre magmatique et bigèbre associative-Zinbiel, Mémoire de Mastère, Strasbourg (2005)
[5] Cartier, P., On the structure of free Baxter algebras, Adv. Math., 9, 253-265 (1972) · Zbl 0267.60052 · doi:10.1016/0001-8708(72)90018-7
[6] Cartier P.: Fonctions polylogarithmes, nombres polyzêtas et groupes pro-unipotents. Séminaire Bourbaki, vol. 2000/2001. Astérisque No. 282, Exp. No. 885, viii, 137-173 (2002) · Zbl 1085.11042
[7] Ebrahimi-Fard, K.; Guo, L., Integrable renormalization. II. The general case, Ann. Henri Poincaré, 6, 2, 369-395 (2005) · Zbl 1077.81052 · doi:10.1007/s00023-005-0211-2
[8] Guo, L.; Keigher, W., Baxter algebras and shuffle products, Adv. Math., 150, 1, 117-149 (2000) · Zbl 0947.16013 · doi:10.1006/aima.1999.1858
[9] Hoffman, M., Quasi-shuffle products, J. Algebraic Combin., 11, 1, 49-68 (2000) · Zbl 0959.16021 · doi:10.1023/A:1008791603281
[10] Ihara, K.; Kaneko, M.; Zagier, D., Derivation and double shuffle relations for Multiple Zeta Values, Compos. Math., 142, 2, 307-338 (2006) · Zbl 1186.11053 · doi:10.1112/S0010437X0500182X
[11] Loday, J.-L.: Dialgebras, in “Dialgebras and related operads”, Springer Lecture Notes in Math. 1763, pp. 7-66 (2001) · Zbl 0999.17002
[12] Loday, J.-L.: Scindement d’associativité et algèbres de Hopf, Proceedings of the Conference in honor of Jean Leray, Nantes 2002, Séminaire et Congrès (SMF) 9, 155-172 (2004) · Zbl 1073.16032
[13] Loday, J.-L.: Generalized bialgebras and triples of operads. Preprint 2006, ArXiv:math. QA/0611885
[14] Loday, J.-L., Ronco, M.: Trialgebras and families of polytopes. In: Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-theory. Contemp. Math. 346, 369-398 (2004) · Zbl 1065.18007
[15] Loday, J.-L.; Ronco, M., On the structure of cofree Hopf algebras, J. reine angew. Math., 592, 123-155 (2006) · Zbl 1096.16019
[16] Manchon, D., L’algèbre de Hopf bitensorielle, Comm. Algebra, 25, 5, 1537-1551 (1997) · Zbl 0880.16021
[17] Milnor, J. W.; Moore, J. C., On the structure of Hopf algebras, Ann. Math., 81, 2, 211-264 (1965) · Zbl 0163.28202 · doi:10.2307/1970615
[18] Quillen, D., Rational homotopy theory, Ann. Math., 90, 2, 205-295 (1969) · Zbl 0191.53702 · doi:10.2307/1970725
[19] Ronco, M.: Primitive elements in a free dendriform algebra, New trends in Hopf algebra theory (La Falda, 1999), 245-263, Contemp. Math., 267, Amer. Math. Soc., Providence, RI (2000) · Zbl 0974.16035
[20] Ronco, M., Eulerian idempotents and Milnor-Moore theorem for certain non-cocommutative Hopf algebras, J. Algebra, 254, 1, 152-172 (2002) · Zbl 1017.16033 · doi:10.1016/S0021-8693(02)00097-2
[21] Vallette, B., Homology of generalized partition posets, J. Pure Appl. Algebra, 208, 699-725 (2007) · Zbl 1109.18002 · doi:10.1016/j.jpaa.2006.03.012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.