×

Nonparametric estimation of convex models via mixtures. (English) Zbl 1018.62023

Summary: We present a general approach to estimating probability measures constrained to lie in a convex set. We represent constrained measures as mixtures of simple, known extreme measures, and so the problem of estimating a constrained measure becomes one of estimating an unconstrained mixing measure. Convex constraints arise in many modeling situations, such as estimation of the mean and estimation under stochastic ordering constraints. We describe mixture representation techniques for these and other situations, and discuss applications to maximum likelihood and Bayesian estimation.

MSC:

62G07 Density estimation
62F30 Parametric inference under constraints
60E15 Inequalities; stochastic orderings
60A10 Probabilistic measure theory
62A01 Foundations and philosophical topics in statistics
62C10 Bayesian problems; characterization of Bayes procedures
Full Text: DOI

References:

[1] ANTONIAK, C. E. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Ann. Statist. 2 1152-1174. · Zbl 0335.60034 · doi:10.1214/aos/1176342871
[2] ARJAS, E. and GASBARRA, D. (1996). Bayesian inference of survival probabilities, under stochastic ordering constraints. J. Amer. Statist. Assoc. 91 1101-1109. JSTOR: · Zbl 0880.62024 · doi:10.2307/2291729
[3] ASH, R. B. (1972). Real Analy sis and Probability. Academic Press, New York.
[4] BERTIN, E. M. J., CUCULESCU, I. and THEODORESCU, R. (1997). Unimodality of Probability Measures. Kluwer, Dordrecht. · Zbl 0876.60001
[5] BLACKWELL, D. and MACQUEEN, J. B. (1973). Ferguson distributions via Póly a urn schemes. Ann. Statist. 1 353-355. · Zbl 0276.62010
[6] BÖHNING, D. (1995). A review of reliable maximum likelihood algorithms for semiparametric mixture models. J. Statist. Plann. Inference 47 5-28. · Zbl 0832.62026 · doi:10.1016/0378-3758(94)00119-G
[7] BRUNK, H. D., FRANCK, W. E., HANSON, D. L. and HOGG, R. V. (1966). Maximum likelihood estimation of the distributions of two stochastically ordered random variables. J. Amer. Statist. Assoc. 61 1067-1080. JSTOR: · Zbl 0146.40101 · doi:10.2307/2283201
[8] BRUNNER, L. J. and LO, A. Y. (1989). Bay es methods for a sy mmetric unimodal density and its mode. Ann. Statist. 17 1550-1566. · Zbl 0697.62003 · doi:10.1214/aos/1176347381
[9] DARDANONI, V. and FORCINA, A. (1998). A unified approach to likelihood inference on stochastic orderings in a nonparametric context. J. Amer. Statist. Assoc. 93 1112-1123. JSTOR: · Zbl 1063.62547 · doi:10.2307/2669854
[10] DHARMADHIKARI, S. and JOAG-DEV, K. (1988). Unimodality, Convexity, and Applications. Academic Press, Boston. · Zbl 0646.62008
[11] DIACONIS, P. and FREEDMAN, D. (1980). Finite exchangeable sequences. Ann. Probab. 8 745-764. · Zbl 0434.60034 · doi:10.1214/aop/1176994663
[12] DIACONIS, P. and FREEDMAN, D. (1986). On the consistency of Bay es estimates. Ann. Statist. 14 1-26. · Zbl 0595.62022 · doi:10.1214/aos/1176349830
[13] DOSS, H. (1985). Bayesian nonparametric estimation of the median. I. Computation of the estimates. Ann. Statist. 13 1432-1444. · Zbl 0587.62070 · doi:10.1214/aos/1176349746
[14] Dy KSTRA, R. L. and FELTZ, C. J. (1989). Nonparametric maximum likelihood estimation of survival functions with a general stochastic ordering and its dual. Biometrika 76 331- 341. JSTOR: · Zbl 0669.62018 · doi:10.1093/biomet/76.2.331
[15] Dy NKIN, E. B. (1978). Sufficient statistics and extreme points. Ann. Probab. 6 705-730. · Zbl 0403.62009 · doi:10.1214/aop/1176995424
[16] EL BARMI, H. and Dy KSTRA, R. L. (1994). Restricted multinomial maximum likelihood estimation based upon Fenchel duality. Statist. Probab. Lett. 21 121-130. · Zbl 0801.62033 · doi:10.1016/0167-7152(94)90219-4
[17] EL BARMI, H. and Dy KSTRA, R. (1998). Maximum likelihood estimates via duality for log-convex models when cell probabilities are subject to convex constraints. Ann. Statist. 26 1878- 1893. · Zbl 0929.62029 · doi:10.1214/aos/1024691361
[18] FERGUSON, T. S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1 209-230. · Zbl 0255.62037 · doi:10.1214/aos/1176342360
[19] FERGUSON, T. S. (1974). Prior distributions on spaces of probability measures. Ann. Statist. 2 615-629. · Zbl 0286.62008 · doi:10.1214/aos/1176342752
[20] HOFF, P. D. (2000). Constrained nonparametric maximum likelihood via mixtures. J. Comput. Graph. Statist. 9 633-641. JSTOR: · doi:10.2307/1391084
[21] HOFF, P. D., HALBERG, R. B., SHEDLOVSKY, A., DOVE, W. F. and NEWTON, M. A. (2001). Identifying carriers of a genetic modifier using nonparametric Bay es methods. Case Studies in Bayesian Statistics 5. Lecture Notes on Statist. 162 327-342. · Zbl 1020.62104
[22] KAMAE, T., KRENGEL, U. and O’BRIEN, G. L. (1977). Stochastic inequalities on partially ordered spaces. Ann. Probab. 5 899-912. · Zbl 0371.60013 · doi:10.1214/aop/1176995659
[23] KARR, A. F. (1991). Point Processes and Their Statistical Inference, 2nd ed. Dekker, New York. · Zbl 0733.62088
[24] KORWAR, R. M. and HOLLANDER, M. (1973). Contributions to the theory of Dirichlet processes. Ann. Probab. 1 705-711. · Zbl 0264.60084 · doi:10.1214/aop/1176996898
[25] KULLBACK, S. (1968). Probability densities with given marginals. Ann. Math. Statist. 39 1236- 1243. · Zbl 0165.20303 · doi:10.1214/aoms/1177698249
[26] LEHMANN, E. L. (1997). Testing Statistical Hy potheses, 2nd ed. Springer, New York.
[27] LEROUX, B. G. (1992). Consistent estimation of a mixing distribution. Ann. Statist. 20 1350-1360. · Zbl 0763.62015 · doi:10.1214/aos/1176348772
[28] LESPERANCE, M. L. and KALBFLEISCH, J. D. (1992). An algorithm for computing the nonparametric MLE of a mixing distribution. J. Amer. Statist. Assoc. 87 120-126. · Zbl 0850.62336 · doi:10.2307/2290459
[29] LINDSAY, B. G. (1983). The geometry of mixture likelihoods: A general theory. Ann. Statist. 11 86-94. · Zbl 0512.62005 · doi:10.1214/aos/1176346059
[30] LINDSAY, B. G. (1995). Mixture Models: Theory, Geometry and Applications. IMS, Hay ward, CA. · Zbl 1163.62326
[31] LINDSAY, B. G. and ROEDER, K. (1993). Uniqueness of estimation and identifiability in mixture models. Canad. J. Statist. 21 139-147. JSTOR: · Zbl 0779.62032 · doi:10.2307/3315807
[32] LO, A. Y. (1984). On a class of Bayesian nonparametric estimates. I. Density estimates. Ann. Statist. 12 351-357. · Zbl 0557.62036 · doi:10.1214/aos/1176346412
[33] MACEACHERN, S. N. and MÜLLER, P. (1998). Estimating mixture of Dirichlet process models. J. Comput. Graph. Statist. 7 223-238.
[34] NEAL, R. M. (2000). Markov chain sampling methods for Dirichlet process mixture models. J. Comput. Graph. Statist. 9 249-265. JSTOR: · doi:10.2307/1390653
[35] NEWTON, M. A., CZADO, C. and CHAPPELL, R. (1996). Bayesian inference for semiparametric binary regression. J. Amer. Statist. Assoc. 91 142-153. JSTOR: · Zbl 0870.62026 · doi:10.2307/2291390
[36] OWEN, A. B. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75 237-249. JSTOR: · Zbl 0641.62032 · doi:10.1093/biomet/75.2.237
[37] OWEN, A. B. (1990). Empirical likelihood ratio confidence regions. Ann. Statist. 18 90-120. · Zbl 0712.62040 · doi:10.1214/aos/1176347494
[38] OWEN, A. B. (2001). Empirical Likelihood. Chapman and Hall, London. · Zbl 0989.62019
[39] PARTHASARATHY, K. R. (1967). Probability Measures on Metric Spaces. Academic Press, New York. · Zbl 0153.19101
[40] PETERS, C. and COBERLY, W. A. (1976). The numerical evaluation of the maximum-likelihood estimate of mixture proportions. Comm. Statist. Theory Methods 5 1127-1135. · Zbl 0364.62023 · doi:10.1080/03610927608827429
[41] PETRONE, S. and RAFTERY, A. E. (1997). A note on the Dirichlet process prior in Bayesian nonparametric inference with partial exchangeability. Statist. Probab. Lett. 36 69-83. · Zbl 0953.62105 · doi:10.1016/S0167-7152(97)00050-3
[42] PFANZAGL, J. (1979). Conditional distributions as derivatives. Ann. Probab. 7 1046-1050. · Zbl 0427.60003 · doi:10.1214/aop/1176994897
[43] PFANZAGL, J. (1988). Consistency of maximum likelihood estimators for certain nonparametric families, in particular: Mixtures. J. Statist. Plann. Inference 19 137-158. · Zbl 0656.62044 · doi:10.1016/0378-3758(88)90069-9
[44] VAN DE GEER, S. (1995). Asy mptotic normality in mixture models. ESAIM Probab. Statist. 1 17-33. · Zbl 0867.62026 · doi:10.1051/ps:1997101
[45] VON WEIZSÄCKER, H. and WINKLER, G. (1979). Integral representation in the set of solutions of a generalized moment problem. Math. Ann. 246 23-32. · Zbl 0403.46015 · doi:10.1007/BF01352023
[46] VON WEIZSÄCKER, H. and WINKLER, G. (1980). Noncompact extremal integral representations: Some probabilistic aspects. In Functional Analy sis: Survey s and Recent Results II (K.-D. Bierstedt and B. Fuchssteiner, eds.) 115-148. North-Holland, Amsterdam. · Zbl 0428.46014
[47] WEST, M., MÜLLER, P. and ESCOBAR, M. D. (1994). Hierarchical priors and mixture models, with application in regression and density estimation. In Aspects of Uncertainty (P. R. Freeman and A. F. M. Smith, eds.) 363-386. Wiley, Chichester. · Zbl 0842.62001
[48] WU, C. F. (1978). Some iterative procedures for generating nonsingular optimal designs. Comm. Statist. Theory Methods 7 1399-1412. · Zbl 0399.62076 · doi:10.1080/03610927808827721
[49] YERSHOV, M. P. (1973). Extensions of measures. Stochastic equations. Proc. Second Japan-USSR Sy mposium on Probability Theory. Lecture Notes in Math. 330 516-526. Springer, Berlin. · Zbl 0268.28002
[50] SEATTLE, WASHINGTON 98195-4322 E-MAIL: hoff@stat.washington.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.