×

Local indicability in ordered groups: braids and elementary amenable groups. (English) Zbl 0996.20024

Groups which are locally indicable are also right-orderable, but not conversely. This paper considers a characterization of local indicability in right-ordered groups, the key concept being a property of right-ordered groups due to Conrad. The authors answer a question regarding the Artin braid groups \(B_n\) which are known to be right-orderable. The subgroups \(P_n\) of pure braids enjoy an ordering which is invariant under multiplication on both sides, and it has been asked whether such an ordering of \(P_n\) could extend to a right-invariant ordering of \(B_n\). The authors answer this in the negative. The authors also give another proof of a recent result of Linnell that for elementary amenable groups, the concepts of right-orderability and local indicability coincide.
Reviewer: Meng Jie (Xian)

MSC:

20F36 Braid groups; Artin groups
20F60 Ordered groups (group-theoretic aspects)
43A07 Means on groups, semigroups, etc.; amenable groups
06F15 Ordered groups
Full Text: DOI

References:

[1] Emil Artin, Theorie der Zöpfe, Abh. Math. Sem. Univ. Hamburg 4 (1925), 47-72. · JFM 51.0450.01
[2] George M. Bergman, Right orderable groups that are not locally indicable, Pacific J. Math. 147 (1991), no. 2, 243 – 248. · Zbl 0677.06007
[3] S. D. Brodskiĭ, Equations over groups, and groups with one defining relation, Sibirsk. Mat. Zh. 25 (1984), no. 2, 84 – 103 (Russian).
[4] R. G. Burns and V. W. D. Hale, A note on group rings of certain torsion-free groups, Canad. Math. Bull. 15 (1972), 441 – 445. · Zbl 0244.16006 · doi:10.4153/CMB-1972-080-3
[5] I. M. Chiswell and P. H. Kropholler, Soluble right orderable groups are locally indicable, Canad. Math. Bull. 36 (1993), no. 1, 22 – 29. · Zbl 0802.20035 · doi:10.4153/CMB-1993-004-2
[6] Ching Chou, Elementary amenable groups, Illinois J. Math. 24 (1980), no. 3, 396 – 407. · Zbl 0439.20017
[7] Paul Conrad, Right-ordered groups, Michigan Math. J. 6 (1959), 267 – 275. · Zbl 0099.01703
[8] Patrick Dehornoy, From large cardinals to braids via distributive algebra, J. Knot Theory Ramifications 4 (1995), no. 1, 33 – 79. · Zbl 0873.20030 · doi:10.1142/S0218216595000041
[9] R. Fenn, M. T. Greene, D. Rolfsen, C. Rourke, and B. Wiest, Ordering the braid groups, Pacific J. Math. 191 (1999), no. 1, 49 – 74. · Zbl 1009.20042 · doi:10.2140/pjm.1999.191.49
[10] A. M. W. Glass, Partially ordered groups, Series in Algebra, vol. 7, World Scientific Publishing Co., Inc., River Edge, NJ, 1999. · Zbl 0933.06010
[11] E. A. Gorin and V. Ja. Lin, Algebraic equations with continuous coefficients, and certain questions of the algebraic theory of braids, Mat. Sb. (N.S.) 78 (120) (1969), 579 – 610 (Russian).
[12] Djun M. Kim and Dale Rolfsen, Ordering groups of pure braids and hyperplane arrangements, preprint. · Zbl 1047.20027
[13] Правоупорядоченные группы, Сибирская Школа Алгебры и Логики. [Сибериан Счоол оф Алгебра анд Логиц], Научная Книга (НИИ МИООНГУ), Новосибирск, 1996 (Руссиан, щитх Руссиан суммары).
[14] Peter A. Linnell, Left ordered amenable and locally indicable groups, J. London Math. Soc. (2) 60 (1999), no. 1, 133 – 142. · Zbl 0940.20047 · doi:10.1112/S0024610799007462
[15] Patrizia Longobardi, Mercede Maj, and Akbar Rhemtulla, When is a right orderable group locally indicable?, Proc. Amer. Math. Soc. 128 (2000), no. 3, 637 – 641. · Zbl 0941.20037
[16] Roberta Botto Mura and Akbar Rhemtulla, Orderable groups, Marcel Dekker, Inc., New York-Basel, 1977. Lecture Notes in Pure and Applied Mathematics, Vol. 27. · Zbl 0358.06038
[17] L. P. Neuwirth, The status of some problems related to knot groups, Topology Conference (Virginia Polytech. Inst. and State Univ., Blacksburg, Va., 1973) Springer, Berlin, 1974, pp. 209 – 230. Lecture Notes in Math., Vol. 375.
[18] Dale Rolfsen, Knots and links, Mathematics Lecture Series, vol. 7, Publish or Perish, Inc., Houston, TX, 1990. Corrected reprint of the 1976 original. · Zbl 0854.57002
[19] Dale Rolfsen and Jun Zhu, Braids, orderings and zero divisors, J. Knot Theory Ramifications 7 (1998), no. 6, 837 – 841. · Zbl 0928.20031 · doi:10.1142/S0218216598000425
[20] Stan Wagon, The Banach-Tarski paradox, Cambridge University Press, Cambridge, 1993. With a foreword by Jan Mycielski; Corrected reprint of the 1985 original. · Zbl 0569.43001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.