×

On the prime-to-\(p\) part of the groups of connected components of Néron models. (English) Zbl 0863.14023

Let \(D\) be a strictly henselian discrete valuation ring of residue characteristic \(p\geq 0\) and field of fractions \(K\). Let \(A\) be the Néron model of an abelian variety of dimension \(d\). Let \(\Phi\) denote the group of components of \(A\). While the \(p\)-part of this abelian group is still rather mysterious, its prime-to-\(p\) part \(\Phi_{(p)}\) is now well-understood thanks to the complete classification of the possible groups \(\Phi_{(p)}\) given in this article.
Let \(u,t\), and \(a\), denote respectively the unipotent, toric and abelian rank of \(A\). Let \(L/K\) denote the smallest Galois extension such that the generic fiber of \(A\) has semistable reduction, and let \(t_L\) and \(a_L\) denote the corresponding ranks. Recall that in the case of elliptic curves, one observes two distinct behaviours for the group \(\Phi\): If \(u=1\), then the order of \(\Phi\) is bounded by a constant depending only on \(u\) (namely, \(2^{2u})\), and if \(t=1\), then the group \(\Phi\) can be generated by a single element. The reviewer [J. Reine Angew. Math. 445, 109-160 (1993; Zbl 0781.14029)] generalized these facts by establishing, for arbitrary abelian varieties, the existence of a functorial filtration \((0)\subseteq \Phi^3_{(p)} \subseteq \Phi^2_{(p)} \subseteq \Phi^1_{(p)} \subseteq \Phi_{(p)}\), such that \(\Phi^3_{(p)}\) is generated by \(t\) elements, and \(|\Phi_{(p)}/ \Phi^2_{(p)} |\) and \(|\Phi^2_{(p)}/ \Phi^3_{(p)} |\) are bounded by explicit constants depending on \(t_L-t\) and \(a_L-a\).
In this article, the author improves these bounds as follows. If \(G\) is any abelian group and \(\ell\) is a prime, write the \(\ell\)-part \(G_\ell\) of \(G\) as \(G_\ell \cong\prod_{i\geq 1} \mathbb{Z}/ \ell^{m_{\ell,i}} \mathbb{Z}\), with \(m_{\ell,1}\geq m_{\ell,2} \geq\dots\). Let \(\delta_\ell(G): =\sum_{i\geq 1} (\ell^{m_{\ell,i}}-1)\), and let \(\delta(G) =\sum_\ell \delta_\ell(G)\). The author shows that \(\delta(\Phi^2_{(p)}/ \Phi^3_{(p)}) \leq t_L-t\), and that \(\delta(\Phi_{(p)}/ \Phi^2_{(p)}) \leq t_L-t+ 2(a_L-a)\). He then combines these two bounds into a single bound and proves the following theorem:
There exists an abelian variety over \(K\) of dimension \(d\) and ranks \(u,t\), and \(a\) which has \(\Phi_{(p)}\) isomorphic to a given group \(G=\prod_{\ell \neq p} G_\ell\) if and only if \[ 2u\geq \sum_{\ell\neq p} \sum_{i\geq t+1} (\ell^{\lfloor m_{\ell,i}/2 \rfloor}+ \ell^{\lceil m_{\ell,i}/2 \rceil}-2), \] where for any real number \(x\), \(\lfloor x\rfloor\) and \(\lceil x\rceil\) denote the largest integer \(\leq x\) (resp. the smallest integer \(\geq x)\).

MSC:

14K05 Algebraic theory of abelian varieties

Citations:

Zbl 0781.14029

References:

[1] Bosch, S. , Lütkebohmert, W. and Raynaud, M. : Néron Models, Ergebnisse der Mathematik und ihrer Grenzgebiete , 3 Folge, Band21, Springer-Verlag, 1990. · Zbl 0705.14001
[2] Deligne, P. and Rapoport, M. : Les schémas de modules de courbes elliptiques, in Modular Functions of One Variable II , Lecture Notes in Math. 349, Springer-Verlag, 1975, pp. 143-316. · Zbl 0281.14010
[3] Edixhoven, B. : Néron models and tame ramification , Compositio Mathematica 81 (1992), 291-306. · Zbl 0759.14033
[4] Edixhoven, B. , Liu, Q. and Lorenzini, D. : The p-part of the group of components . To be submitted for publication. · Zbl 0898.14007
[5] Grothendieck, A. : Modèles de Néron et monodromie , Lecture Notes in Math. 288, Séminaire de Géométrie 7, Exposé IX, Springer-Verlag, 1973. · Zbl 0248.14006
[6] Lenstra, H.W. and Oort, F. : Abelian varieties having purely additive reduction , J. Pure Appl. Algebra 36 (1985), 281-298. · Zbl 0557.14022 · doi:10.1016/0022-4049(85)90079-9
[7] Lorenzini, D. : On the group of components of a Néron model , J. Reine Angew. Math. 445 (1993), 109-160. · Zbl 0781.14029 · doi:10.1515/crll.1993.445.109
[8] Macdonald, I.G. : Symmetric Functions and Hall Polynomials , Oxford, Clarendon Press, Oxford, 1979. · Zbl 0487.20007
[9] Milne, J.S. : Arithmetic Duality Theorems , Perspectives in Math. 1, Academic Press, New York, 1986. · Zbl 0613.14019
[10] Moret-Bailly, L. : Pinceaux de Variétés Abéliennes , Astérisque 129, Société Mathématique de France, 1985. · Zbl 0595.14032
[11] Mumford, D. : An analytic construction of degenerating abelian varieties over complete rings , Compositio Mathematica 24(3) (1972), 239-272. · Zbl 0241.14020
[12] Oort, F. : Good and stable reduction of abelian varieties , Manuscripta Math. 11 (1974), 171-197. · Zbl 0266.14016 · doi:10.1007/BF01184956
[13] Tate, J. : Algorithm for determining the type of a singular fibre in an elliptic pencil, in Modular Functions of One Variable IV , Lecture Notes in Math. 476, Springer-Verlag, 1975, pp. 33-52. · Zbl 1214.14020 · doi:10.1007/BFb0097582
[14] Winters, G. : On the Existence of Certain Families of Curves , Am. J. Math. 96 (1974), 215-228. · Zbl 0334.14004 · doi:10.2307/2373628
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.